
Lecture 11: Virtual Memory II

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

2

Lab 2 is out
• Due Friday 11/07 11:59 pm
• Start early!

Homework 3 is released
• Related to midterm

Lecture Overview

3

Today we’ll cover more paging mechanisms:

Two-level page table

Address translation

Optimizations
• Managing page tables (space)
• Efficient translations (TLBs) (time)
• Demand paged virtual memory (space)

Advanced functionality
• Sharing memory
• Copy on Write
• Mapped files

Recap: Page Lookups

4

Page# offset

Virtual address Physical memory

Page Table

Page frame

page frame offset

Physical address

Recap: Paging Example

5

Pages are 4K
• VPN is 20 bits (220 VPNs), offset is 12 bits

Virtual address is 0x7468
• Virtual page is 0x7, offset is 0x468

Page table entry 0x7contains 0x2
• Physical page number is 0x2
• Seventh virtual page is at address 0x2000 (2nd physical page)

Physical address = 0x2000+ 0x468= 0x2468

VPN offset

31 12 11 0

Virtual address

Problem of Page Tables

6

Size of the page table for a 32-bit address space w/ 4K pages
• 232 / 212 × 4 B = 4MB
• This is far far too much overhead for each process

How can we reduce this overhead?

Page Table Evolution

7

Physical memory Virtual Address
Space

Page 0
Page 1
Page 2

Page N-1

……

Linear (Flat)
Page Table

Page Table Evolution

8

Physical memory Virtual Address
Space

Page 0
Page 1
Page 2

Page N-1

……

Linear (Flat)
Page Table

Waste
Unmapped

Solution

9

Size of the page table for a 32-bit address space w/ 4K pages
• 232 / 212 × 4 B = 4MB
• This is far far too much overhead for each process

How can we reduce this overhead?
• Observation: only need to map the portion of the address space actually being used

(tiny fraction of entire addr space)

How do we only map what is being used?
• Can dynamically extend page table…
• Does not work if addr space is sparse (internal fragmentation)

Page Table Evolution

10

Physical memory Virtual Address
Space

Page 0
Page 1
Page 2

Page N-1

…

Master

Hierarchical
Page Table

…

Use another level of indirection: two-level page tables

Page Table Evolution

11

Physical memory Virtual Address
Space

Page 0
Page 1
Page 2

Page N-1

…

Master

Hierarchical
Page Table

…

Use another level of indirection: two-level page tables

Unmapped

No Need

Two-Level Page Tables

12

Two-level page tables
• One master page table that maps VAs to some secondary page table
• A secondary page table maps page number to some physical page
• Offset indicates where in physical page the address is located

Two-Level Page Table Translation

13Secondary Page Table

Master Page Table

Page table

Page table

Page table

frame
frame

frame

frame

frame

frame

frame

frame

frame

Physical memory

Two-Level Page Tables

14

Two-level page tables
• One master page table that maps VAs to some secondary page table
• A secondary page table maps page number to some physical page
• Offset indicates where in physical page the address is located
• Virtual addresses (VAs) have three parts:

o Master page number, secondary page number, and offset

Two-Level Page Tables Look Up

15

Physical memory

page frame offset

Physical address

Master Page Table

Page table

Master Page Number offset
Virtual address

Secondary

Secondary Page Table

frame

frame

frame

frame

frame

frame

Two-Level Page Table

16

Example
• 4KB-sized pages, 4 bytes/PTE
• How many bits in offset? log2(4𝐾) = 12 bits
• We want the master page table in one page: 4K/4 bytes = 1K entries
• Hence, 1024 secondary page tables. How many bits?
• Master log2(1𝐾) = 10, offset = 12, inner = 32 – 10 – 12 = 10 bits

Master Page Number offset

32-bit Virtual address

Secondary

10 10 12

Wait a Second…

17

We introduced two-level page tables to reduce the overhead of storing
page tables

• Each page table costs 232 / 212 × 4 B = 4MB to store

But even if we add another level, isn’t the overhead the same?
• 1024 secondary page tables
• Each secondary page table has 210 PTEs, thus has a size of 4KB
• Total size of these page tables is 1024 × 4KB = 4MB…
• In fact, we also have one master page table, which has a size of 4KB…

X86 Page Translation

18

X86_64: Four Level Page Table

19

9 bits 9 bits 12 bits9 bits9 bits

P3 index offset

64-bit Virtual address

P4 indexP2 indexP1 index

8 bytes

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable) page frame offset

Physical address

Addressing Page Tables

20

Where do we store page tables (which address space)?

Physical memory
• Easy to address, no translation required
• But, allocated page tables consume memory for lifetime of VAS

Virtual memory (OS virtual address space)
• Cold (unused) page table pages can be paged out to disk
• But, addressing page tables requires translation
• How do we stop recursion?
• Do not page the outer page table (called wiring)

If we’re going to page the page tables, might as well page the entire OS address
space, too

• Need to wire special code and data (fault, interrupt handlers)

Lecture Overview

21

Today we’ll cover more paging mechanisms:

Two-level page table

Address translation

Optimizations
• Managing page tables (space)
• Efficient translations (TLBs) (time)
• Demand paged virtual memory (space)

Advanced functionality
• Sharing memory
• Copy on Write
• Mapped files

Recap: Memory Translation

22

Kernel
MMU

Virtual address
0x30408

Physical
memory

Yes: phy. addr
0x92404

The MMU must translate virtual address to physical address on:
• Every instruction fetch, load, store

What does the MMU need to do to translate an address?
• Page Table

o Read PTE from memory, check valid, merge address
o Set “accessed” bit in PTE, Set “dirty bit” on write

• 2-level Page Table
o Read and check first level
o Read, check, and update PTE

• N-level Page Table …

Efficient Translations

23

Our original page table already doubled the cost of memory access
• One lookup into the page table, another to fetch the data

Now two-level page tables triple the cost!
• Two lookups into the page tables, a third to fetch the data
• Worse, 64-bit architectures support 4-level page tables
• And this assumes the page table is in memory

How can we use paging but also reduce lookup cost?
• Cache translations in hardware
• Translation Lookaside Buffer (TLB)
• TLB managed by Memory Management Unit (MMU)

Caching

24

Cache : a memory region that can be accessed more quickly than the main memory
• Caches usually index data using the physical address returned by the MMU
• Store recently used data, instructions, or even address translations (TLB)
• Cache hit: data returned immediately.
• Cache miss: data fetched from main memory and inserted into cache.

Improve performance because of program locality:
• Temporal Locality (Locality in Time):

o Keep recently accessed data items closer to processor
• Spatial Locality (Locality in Space):

o Move contiguous blocks to the upper levels

Kernel
MMU

Virtual address
0x30408

Physical
memory

Yes: phy. addr
0x92404

Cache(s)

Caching Example

25

Average Memory Access Time = (Hit Rate x HitTime) + (Miss Rate x MissTime)
If HitRate = 90%, what is AMAT?

• (0.9 x 10) + (0.1 x 110)=20 ns
If HitRate = 99%, what is AMAT?

• (0.99 x 10) + (0.01 x 110) = 11 ns
If HitRate = 10%, what is AMAT

• (0.1 x 10) + (0.9 x 110) = 100 ns

Kernel Physical
memory

Cache(s)

Access time= 100ns

Kernel Physical
memory

Access time= 10 ns Access time= 100ns

Caching Address Translation

26

Cache results of recent translations !
• Different from a traditional cache
• Cache Page Table Entries using Virtual Page # as the key

Kernel
MMU

Virtual address
0x30408

Yes: phy. addr
0x92404

Cache(s)

V_Page #1 : <P_Page #1, V, … >

V_Page #2 : <P_Page #2, V, … >

…

V_Page #k : <P_Page #k, V, … >

Physical
memory

Page Table

TLBs

27

Translation Lookaside Buffers
• Translate virtual page #s into PTEs (not physical address)
• Can be done in a single machine cycle

TLBs implemented in hardware
• Typically 4-way to fully associative cache (all entries looked up in parallel)
• Cache tags are virtual page numbers
• Cache values are PTEs (entries from page tables)
• With PTE + offset, can directly calculate physical address

TLBs exploit locality
• Processes only use a handful of pages at a time

o 32-128 entries/pages (128-512K)
o Only need those pages to be “mapped”

• Hit rates are therefore very important

TLBs

28

Managing TLBs

29

Address translations for most instructions are handled using the TLB
• >99% of translations, but there are misses (TLB miss)…

Who places translations into the TLB (loads the TLB)?
• Hardware-managed TLB (Memory Management Unit) [x86]

o Knows where page tables are in main memory
o OS maintains tables, HW accesses them directly
o Tables have to be in HW-defined format (inflexible)

• Software-managed TLB (OS) [MIPS, Alpha, Sparc, PowerPC]
o TLB faults to the OS, OS finds appropriate PTE, loads it in TLB
o Must be fast (but still 20-200 cycles)
o CPU ISA has instructions for manipulating TLB
o Tables can be in any format convenient for OS (flexible)

Managing TLBs (2)

30

OS ensures that TLB and page tables are consistent
• When it changes the protection bits of a PTE, it needs to invalidate the PTE if it is in the

TLB

Reload TLB on a process context switch
• Invalidate all entries
• Why? What is one way to fix it?

When the TLB misses and a new PTE has to be loaded, a cached PTE must
be evicted

• Choosing PTE to evict is called the TLB replacement policy
• Implemented in hardware, often simple (e.g., Last-Not-Used)

The Common Workflow

31

Situation: Process is executing on the CPU, and it issues a read to an
address

• What kind of address is it? Virtual or physical?

The read goes to the TLB in the MMU
1. TLB does a lookup using the page number of the address
2. Common case is that the page number matches, returning a page table entry (PTE)

for the mapping for this address
3. TLB validates that the PTE protection allows reads (in this example)
4. PTE specifies which physical frame holds the page
5. MMU combines the physical frame and offset into a physical address
6. MMU then reads from that physical address, returns value to CPU

Note: This is all done by the hardware

TLB Misses

32

At this point, one other things can happen
1. TLB does not have a PTE mapping this virtual address

Kernel

Physical
memory

TLB
Cached?

Virtual address
physical
address

Yes

No

MMU

Reloading the TLB

33

If the TLB does not have mapping, two possibilities:
1. MMU loads PTE from page table in memory

• Hardware managed TLB, OS not involved in this step
• OS has already set up the page tables so that the hardware can access it directly

2. Trap to the OS
• Software managed TLB, OS intervenes at this point
• OS does lookup in page table, loads PTE into TLB
• OS returns from exception, TLB continues

A machine will only support one method or the other

At this point, there is a PTE for the address in the TLB

Lecture Overview

34

Today we’ll cover more paging mechanisms:

Two-level page table

Address translation

Optimizations
• Managing page tables (space)
• Efficient translations (TLBs) (time)
• Demand paged virtual memory (space)

Advanced functionality
• Sharing memory
• Copy on Write
• Mapped files

Demanded Paging

35

Pages can be moved between memory and disk
• Use disk to simulate larger virtual than physical memory
• This process is called paging in/out

gcc

vim

Virtual Memory Physical Memory Disk

Page out

Page in

Demanded Paging

36

Pages can be moved between memory and disk

Paging process over time
• Initially, pages are allocated from memory
• When memory fills up, allocating a page requires some other page to be evicted
• Evicted pages go to disk (where? the swap file/backing store)
• Done by the OS, and transparent to the application

Extreme design: demand paging
• Paging in a page from disk into memory only if an attempt is made to access it
• Main memory becomes a cache for disk

Recap: TLB Misses

37

At this point, one other things can happen
1. TLB does not have a PTE mapping this virtual address
2. PTE in TLB, but memory access violates PTE protection bits

Kernel

Physical
memory

TLB
Cached?

Virtual address
physical
address

Yes

No

MMU

TLB Misses (2)

38

Page table lookup (by HW or OS) can cause a recursive fault if page table
is paged out

• Assuming page tables are in OS virtual address space
• Not a problem if tables are in physical memory
• Yes, this is a complicated situation

When TLB has PTE, it restarts translation
• Common case is that the PTE refers to a valid page in memory

o These faults are handled quickly, just read PTE from the page table in memory and load into TLB
• Uncommon case is that TLB faults again on PTE because of PTE protection bits

(e.g., page is invalid)
o Becomes a page fault…

Page Faults

39

PTE can indicate a protection fault
• Read/write/execute – operation not permitted on page
• Invalid – virtual page not allocated, or page not in physical memory

TLB traps to the OS (software takes over)
• R/W/E – OS usually will send fault back up to process, or might be

playing games (e.g., copy on write, mapped files)
• Invalid

• Virtual page not allocated in address space
o OS sends fault to process (e.g., segmentation fault)

• Page not in physical memory
o OS allocates frame, reads from disk, maps PTE to physical frame

Page Faults (2)

40

What happens when a process accesses a page is evicted?
1. When the OS evicts a page, it sets the PTE as invalid and stores the location of the

page in the swap file in the PTE
2. When a process accesses the page, the invalid PTE causes a trap (page fault)
3. The trap will run the OS page fault handler
4. Handler uses the invalid PTE to locate page in swap file
5. Reads page into a physical frame, updates PTE to point to it
6. Restarts process

But where does it put it? Have to evict something else
• OS usually keeps a pool of free pages around so that allocations do not always cause

evictions

Page Faults & Paging

41

Address Translation Summary

42

We started this topic with the high-level problem of translating virtual
addresses into physical addresses

We’ve covered all of the pieces
• Virtual and physical addresses
• Virtual pages and physical page frames
• Page tables and page table entries (PTEs), protection
• TLBs
• Demand paging

Now let’s put it together, bottom to top

Address Translation: Putting It All Together

43

Lecture Overview

44

Today we’ll cover more paging mechanisms:

Two-level page table

Address translation

Optimizations
• Managing page tables (space)
• Efficient translations (TLBs) (time)
• Demand paged virtual memory (space)

Advanced functionality
• Sharing memory
• Copy on Write
• Mapped files

Isolation: No Sharing

45

Physical memory Virtual Address
Space #1

Page 0
Page 1
Page 2

Page N-1

…

Virtual Address
Space #2

Page 0
Page 1
Page 2

Page N-1

…

Sharing

46

Private virtual address spaces protect applications from each other
• Usually exactly what we want

But this makes it difficult to share data (have to copy)
• Parents and children in a forking Web server or proxy will want to share an in-memory

cache without copying

We can use shared memory to allow processes to share data using
direct memory references

• Both processes see updates to the shared memory segment
o Process B can immediately read an update by process A

• How are we going to coordinate access to shared data?

Sharing Pages

47

Physical memory Virtual Address
Space #1

Page 0
Page 1
Page 2

Page N-1

…

Virtual Address
Space #2

Page 0
Page 1
Page 2

Page N-1

…

PTEs Point to Same Physical Page

Sharing(2)

48

How can we implement sharing using page tables?
• Have PTEs in both tables map to the same physical frame
• Each PTE can have different protection values
• Must update both PTEs when page becomes invalid

Can map shared memory at same or different virtual addresses in
each process’ address space

• Different: Flexible (no address space conflicts), but pointers inside the shared
memory segment are invalid (Why?)
• Same: Less flexible, but shared pointers are valid (Why?)

What happens if a pointer inside the shared segment references an
address outside the segment?

Copy on Write

49

OSes spend a lot of time copying data
• System call arguments between user/kernel space
• Entire address spaces to implement fork()

Use Copy on Write (CoW) to defer large copies as long as possible, hoping
to avoid them altogether

• Instead of copying pages, create shared mappings of parent pages in child virtual
address space

• Shared pages are protected as read-only in parent and child
o Reads happen as usual
o Writes generate a protection fault, trap to OS, copy page, change page mapping in

client page table, restart write instruction
• How does this help fork()?

Copy on Write: Before Fork

50

Physical memory Parent Virtual
Address Space

Page 0
Page 1
Page 2

Page N-1

…

Copy on Write: After Fork

51

Physical memory Parent Virtual
Address Space

Page 0
Page 1
Page 2

Page N-1

…

Child Virtual
Address Space

Page 0
Page 1
Page 2

Page N-1

Read only mappings

Copy on Write: On A Write

52

Physical memory Parent Virtual
Address Space

Page 0
Page 1
Page 2

Page N-1

…

Child Virtual
Address Space

Page 0
Page 1
Page 2

Page N-1

Now Read-Write & Private

Mapped Files

53

Mapped files enable processes to do file I/O using loads and stores
• Instead of “open, read into buffer, operate on buffer, …”

Bind a file to a virtual memory region (mmap() in Unix)
• PTEs map virtual addresses to physical frames holding file data
• Virtual address base + N refers to offset N in file

Initially, all pages mapped to file are invalid
• OS reads a page from file when invalid page is accessed
• OS writes a page to file when evicted, or region unmapped
• If page is not dirty (has not been written to), no write needed

o Another use of the dirty bit in PTE

Mapped Files

54

Mapped File

Virtual Address
Space

…

Mapped Files (2)

55

File is essentially backing store for that region of the virtual address space
(instead of using the swap file)

• Virtual address space not backed by “real” files also called Anonymous VM

Advantages
• Uniform access for files and memory (just use pointers)
• Less copying (why?)

Drawbacks
• Process has less control over data movement

o OS handles faults transparently
• Does not generalize to streamed I/O (pipes, sockets, etc.)

Summary

56

Paging mechanisms:

Optimizations
• Managing page tables (space)
• Efficient translations (TLBs) (time)
• Demand paged virtual memory (space)

Recap address translation

Advanced Functionality
• Sharing memory
• Copy on Write
• Mapped files

Next time: Paging policies

Next time…

57

Chapters 21-23

	Slide 1: Lecture 11: Virtual Memory II Fall 2025
	Slide 2: Administrivia
	Slide 3: Lecture Overview
	Slide 4: Recap: Page Lookups
	Slide 5: Recap: Paging Example
	Slide 6: Problem of Page Tables
	Slide 7: Page Table Evolution
	Slide 8: Page Table Evolution
	Slide 9: Solution
	Slide 10: Page Table Evolution
	Slide 11: Page Table Evolution
	Slide 12: Two-Level Page Tables
	Slide 13: Two-Level Page Table Translation
	Slide 14: Two-Level Page Tables
	Slide 15: Two-Level Page Tables Look Up
	Slide 16: Two-Level Page Table
	Slide 17: Wait a Second…
	Slide 18: X86 Page Translation
	Slide 19: X86_64: Four Level Page Table
	Slide 20: Addressing Page Tables
	Slide 21: Lecture Overview
	Slide 22: Recap: Memory Translation
	Slide 23: Efficient Translations
	Slide 24: Caching
	Slide 25: Caching Example
	Slide 26: Caching Address Translation
	Slide 27: TLBs
	Slide 28: TLBs
	Slide 29: Managing TLBs
	Slide 30: Managing TLBs (2)
	Slide 31: The Common Workflow
	Slide 32: TLB Misses
	Slide 33: Reloading the TLB
	Slide 34: Lecture Overview
	Slide 35: Demanded Paging
	Slide 36: Demanded Paging
	Slide 37: Recap: TLB Misses
	Slide 38: TLB Misses (2)
	Slide 39: Page Faults
	Slide 40: Page Faults (2)
	Slide 41: Page Faults & Paging
	Slide 42: Address Translation Summary
	Slide 43: Address Translation: Putting It All Together
	Slide 44: Lecture Overview
	Slide 45: Isolation: No Sharing
	Slide 46: Sharing
	Slide 47: Sharing Pages
	Slide 48: Sharing(2)
	Slide 49: Copy on Write
	Slide 50: Copy on Write: Before Fork
	Slide 51: Copy on Write: After Fork
	Slide 52: Copy on Write: On A Write
	Slide 53: Mapped Files
	Slide 54: Mapped Files
	Slide 55: Mapped Files (2)
	Slide 56: Summary
	Slide 57: Next time…

