CE 440 Introduction to Operating System

Lecture 14: Dynamic Memory Allocation
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Memory Allocation

Static Allocation (fixed in size)
* Wantto create data structures that are fixed and don’t need to grow or shrink
* Globalvariables, e.g., charname[16];
* Done at compile time

Dynamic Allocation (change in size)
* Wantto increase or decrease the size of a data structure according to different
demands
* Doneatruntime

Dynamic Memory Allocation

Almost every useful program uses it

* Gives wonderful functionality benefits
* Don’t have to statically specify complex data structures

« Can have data grow as a function of input size
* Allows recursive procedures (stack growth)
 But, can have a huge impact on performance

Two types of dynamic memory allocation
 Stack allocation: restricted, but simple and efficient
* Heap allocation (focus today): general, but difficult to implement.

Dynamic Memory Allocation

Today: how to implement dynamic heap allocation

Lecture based on [Wilson] (good survey from 1995)

Some interesting facts:

Two or three line code change can have huge, non-obvious impact on how well
allocator works (examples to come)

Proven: impossible to construct an "always good" allocator

Surprising result: after 27 years, memory management still poorly understood

o Beyond malloc efficiency to fleet efficiency: a hugepage-aware memory allocator [OSDI ’21]
Big companies may write their own “malloc”

o Google: TCMalloc

o Facebook: jemalloc

Why Is it Hard?

Satisfy arbitrary set of allocation and frees.

Easy without free: set a pointer to the beginning of some big chunk of
memory (“heap”) and increment on each allocation:

‘ ‘ ‘ ‘ heap (free memory) ‘

allocation current free position
>

Problem: free creates holes (“fragmentation’) Result? Lots of free space
but cannot satisfy request!

ININIENIIIRIENIEEEn

More Abstractly
What an allocator must do? [T3~ - - F—ruu

* Track which parts of memory in use, which parts are free freelist

* |deal: no wasted space, no time overhead

What the allocator cannot do?

 Control order of the number and size of requested blocks
» Know the number, size, & lifetime of future allocations
* Move allocated regions (bad placement decisions permanent), unlike Java allocator

malloc (20)? 20 ‘ 10 ‘ 20 ‘ 10 | 20 ‘

The core fight: minimize fragmentation

* App frees blocks in any order, creating holes in “heap”
* Holes too small? cannot satisfy future requests

What Is Fragmentation Really?

Inability to use memory that is free

Two factors required for fragmentation
1. Different lifetimes—if adjacent objects die at different times, then fragmentation:
* If all objects die atthe same time, then no fragmentation:

2. Different sizes: If all requests the same size, then no fragmentation (that’s why no
external fragmentation with paging):

Different lifetimes

Important Decisions

Placement choice: where in free memory to put a requested block?
* Freedom: can select any memory in the heap
* l|deal: put block where it won’t cause fragmentation later (impossible in general:
requires future knowledge)

Split free blocks to satisfy smaller requests?
* Fights internal fragmentation
* Freedom: can choose any larger block to split
* One way: choose block with smallest remainder (best fit)

Coalescing free blocks to yield larger blocks [20 [10] 30 |
* Freedom: when to coalesce (deferring can save work) ’ ’ l' *
* Fights external fragmentation |

30 | 30 |

8

Impossible to “Solve” Fragmentation

If you read allocation papers to find the best allocator
* Alldiscussions revolve around tradeoffs

Theoretical result:

* Forany allocation algorithm, there exist streams of allocation and deallocation
requests that defeat the allocator and force it into severe fragmentation.

How much fragmentation should we tolerate?
* Let M = bytes of live data, n,,;,, = smallest allocation, n,,,, = largest allocation
 Bad allocator: M - (05 / Mmin)
o E.g., make all allocations of size n,, 4, regardless of requested size
* Good allocator: ~ M - log(ny,q0x / Mimin)

Next: two allocators (best fit, first fit) that, in practice, work pretty well
 “pretty well” = ~20% fragmentation under many workloads

9

Best Fit

Strategy: minimize fragmentation by allocating space from block that
leaves smallest fragment

 Data structure: heap is a list of free blocks, each has a header holding block size
and a pointer to the next block

20 > 30 > 30 " 37

» Code: Search freelist for block closest in size to the request (exact match is ideal)
* During free: return free block, and (usually) coalesce adjacent blocks

Potential problem: Sawdust

* Remainder so small that over time left with “sawdust” everywhere
* Fortunately not a problem in practice

10

Best Fit Gone Wrong

Simple bad case: allocate n, m (n <m) in alternating orders, free all the ns,
thentryto allocateann +1

Example: start with 99 bytes of memory | 19| 21 | 19] 21 | 19]
* alloc19,21,19,21,19
 free 19,19, 19: | 19| 20 | 19] 21 | 19]

* alloc 207 Fails! (wasted space = 57 bytes)

However, doesn’t seem to happen in practice

11

First Fit

Strategy: pick the first block that fits
* Data structure: free list, sorted LIFO, FIFO, or by address
e (Code: scan list, take the firstone

Suppose memory has free blocks: | 20 | |15]
* Workload 1: alloc(10), alloc(20)

sestFit [20 | [15] Fstri 20 | E

* Workload 2: alloc(8), alloc(12), alloc(12)

Best Fit | | FstFit | 20 | 15 |

First Fit

LIFO: put free object on front of list.
* Simple, but causes higher fragmentation
* Potentially good for cache locality

Address sort: order free blocks by address
* Makes coalescing easy (just check if next block is free)
* Also preserves empty/idle space (locality good when paging)

FIFO: put free object at end of list
* Gives similar fragmentation as address sort, but unclear why

13

Some Other Ideas

Worst-fit:
* Strategy: fight against sawdust by splitting blocks to maximize leftover size
* Inreallife seemsto ensure that no large blocks around

Next fit:
* Strategy: use first fit, but remember where we found the last thing and start searching
from there
« Seems like a good idea, but tends to break down entire list

Buddy systems:
* Round up allocations to power of 2 to make management faster

14

Buddy Allocator Motivation

Allocation requests: frequently 2°n
* E.g., allocation physical pages in Linux
* Generic allocation strategies: overly generic

Fast search (allocate) and merge (free)
* Avoid iterating through free list

Avoid external fragmentation for req of 2*n

Used by Linux, FreeBSD

15

Buddy Allocator Implementation

Data structure
N+ 1free lists of blocks of size 270, 2*1, ..., 2N

Allocation restrictions: 27k, 0<=k <=N

Allocation of 2"k:
 Search free lists (k, k+1, k+2, ...) for appropriate size
* Recursively divide larger blocks until reach block of correct size
* Insert“buddy” blocks into free lists

Free
* recursively coalesce block with “buddy” if buddy free

16

Buddy Allocation

‘ 64 KB ‘

‘ 32 KB ‘ 32 KB ‘

‘ 16 KB ‘ 16 KB ‘

‘8 KB‘ <_1| buddy block

Recursively divide larger blocks until reach suitable block
* Big enough to fit but if further splitting would be too small

Insert “buddy” blocks into free lists
* The addresses of the buddy pair only differ by one bit!

Upon free, recursively coalesce block with buddy if buddy free

17

Buddy Allocation Example

‘ ‘ ‘ ‘ ‘ ‘ ‘ freelist[3] = {0} Note: 273
1 2 4 5 6 7 .
p1=alloc(2"0)
. _ freelist[0] = {1}, freelist[1] = {2}, freelist[2] = {4}
1 2 4 5 6 =

freelist[0] = {1}, freelist[1] = {2}

freelist[2] = {0}

‘ ‘ ‘ ‘ ‘ freelist[3] = {0}

18

Known Patterns of Real Programs

So far we’ve treated programs as black boxes.

Most real programs exhibit 1 or 2 (or all 3) of the following patterns of
alloc/dealloc:

bytes
—

* Ramps: accumulate data monotonically over time

* Peaks: allocate many objects, use briefly, then free all

bytes
—

bytes
—

* Plateaus: allocate many objects, use for a long time

19

Pattern 1: ramps

Bytes in use
\
\
\
(U U R - |

time
trace from an LRU simulator

In a practical sense: ramp = no free!

* |Implication for fragmentation?
* What happens if you evaluate allocator with ramp programs only?

20

Pattern 2: Peaks

Bytes in use

Time
trace of gcc compiling with full optimization

Peaks: allocate many objects, use briefly, then free all
* Fragmentation a real danger
* What happens if peak allocated from contiguous memory?
* Interleave peak & ramp? Interleave two different peaks?

21

Exploiting Peaks

Peak phases: allocate a lot, then free everything

* Change allocation interface: alloc as before, but only support free of
everything all at once

bR 1

 Called “arena allocation”, “obstack” (object stack)

Arena = a linked list of large chunks of memory
* Advantages: alloc is a pointer increment, free is “free”
* No wasted space for tags or list pointers
* See Pintos threads/malloc.c

22

Pattern 3: Plateaus

Bytes in use

time
trace of perl running a string processing script

Plateaus: allocate many objects, use fora long time

23

Slab Allocation

Kernel allocates many instances of same structures
* E.g.,a1.7 KB task_struct for every process on system

Often want contiguous physical memory (for DMA) Slab allocation

Optimizes for this case:
 Aslabis multiple pages of contiguous physical memory
* Acache contains one or more slabs
* Each cache stores only one kind of object (fixed size)

Each slab is full, empty, or partial

24

Slab Allocation

E.g., need new task_struct?
* Lookinthe task struct cache

* |fthereis a partial slab, pick free task_structin that
Else, use empty, or may need to allocate new slab for cache

Free memory management: bitmap
 Allocate: set bit and return slot, Free: clear bit

Advantages: speed, and no internal fragmentation

Used in FreeBSD and Linux, implemented on top of buddy page allocator

25

Implementing malloc

Getting More Space from OS

Malloc is alibrary call, how does malloc gets free space?
* Notein Pintos, malloc is provided as a kernel function (see threads/malloc.c)

On Unix, can use sbrk and brk
* int brk(void *p)
* Move the program break to address p stack

e Return O if successful and -1 otherwise
* void *sbrk(intptr_t n)

o Increment the program break by n bytes strk

o Ifnis 0, thenreturn the current location of the program break heap

o Return O if successful and (void*)-1 otherwise r/w data
r/o data

+ code

27

Implement malloc()

void *malloc(size t n)

{
char *p = sbrk(0);
if (brk(p + n) ==
return NULL;
return p;

}

void free (void * p)
{
}

4mm get current “program break”
-1) 4@ et “program break” to be current plus n

* Problem?
* Two system calls for every malloc!
* Freed blocks are not reused

e Solutions
* Allocators request memory pool
* Keep track of free list
e |f can’tfind free chunk, request from OS

28

Returning Heap Memory

Allocator can mark blocks as free when free() is called
* These blocks can be reused later by the process
* Problem: they are not returned to the system!
O Can cause memaory pressure

Allocator can return heap memory with brk(pBrk-n), but...

* pinfree(p) is not always at the end of the heap!
* Socan’treduce the heap size with brk(pBrk-n)

Therefore, for large allocations, sbrk() is a bad idea
« Can’treturn memory to the system

29

Solution: VM Mapping

void *mmap(void *p, size t n, int prot, int flags, int fd,
off t offset);
* Creates anew mapping in the virtual address space of the calling process
* p:the starting address for the new mapping
* n:the length of the mapping
* |f pis NULL, the kernel chooses the address at which to create the mapping
* Onsuccess, returns address of the mapped area

int munmap(void *p, size t n);
* Deletes the mappings for the specified address range

30

Implement malloc() with mmap()

void *malloc(size_t n)

{

size t *p;

if (n == 0) return NULL;

p = mmap (NULL, n + sizeof(size t),
PROT_READIPROT_WRITE,

MAP PRIVATE |MAP ANONYMOUS, 0, 0);

if (p == (void*)-1) return NULL;
*p = n + sizeof(size t);
pt+;

return p;

void free (void *p)

{
if (p == NULL) return;

| S

munmap (p, *p);

31

Chapters 36, 37

Next Time

32

	Slide 1: Lecture 14: Dynamic Memory Allocation Fall 2025
	Slide 2: Memory Allocation
	Slide 3: Dynamic Memory Allocation
	Slide 4: Dynamic Memory Allocation
	Slide 5: Why Is it Hard?
	Slide 6: More Abstractly
	Slide 7: What Is Fragmentation Really?
	Slide 8: Important Decisions
	Slide 9: Impossible to “Solve” Fragmentation
	Slide 10: Best Fit
	Slide 11: Best Fit Gone Wrong
	Slide 12: First Fit
	Slide 13: First Fit
	Slide 14: Some Other Ideas
	Slide 15: Buddy Allocator Motivation
	Slide 16: Buddy Allocator Implementation
	Slide 17: Buddy Allocation
	Slide 18: Buddy Allocation Example
	Slide 19: Known Patterns of Real Programs
	Slide 20: Pattern 1: ramps
	Slide 21: Pattern 2: Peaks
	Slide 22: Exploiting Peaks
	Slide 23: Pattern 3: Plateaus
	Slide 24: Slab Allocation
	Slide 25: Slab Allocation
	Slide 26: Implementing malloc
	Slide 27: Getting More Space from OS
	Slide 28: Implement malloc()
	Slide 29: Returning Heap Memory
	Slide 30: Solution: VM Mapping
	Slide 31: Implement malloc() with mmap()
	Slide 32: Next Time

