
Lecture 15: I/O & Disks

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Overview

2

We’ve covered OS abstractions for CPU and memory so far

I/O management is another major component of OS
• Important aspect of computer operation
• I/O devices vary greatly: various methods to control them
• New types of devices

Virtualization

Processes

Scheduling

Virtual Memory

Concurrency

Threads

Synchronization

Semaphores and Monitors

Persistence

I/O

Disks

File Systems

I/O Devices

3

…

Issues to address:
• How should I/O be integrated into systems?
• What are the general mechanisms?
• How can we manage them efficiently?

Structure of Input/Output (I/O) Device

4

CPU Memory

Memory Bus
(proprietary)

General I/O Bus
(e.g., PCI)

Peripheral I/O Bus
(e.g., SCSI, SATA, USB)

Graphics

Structure of I/O Device

5

Device Interaction

6

How does the OS communicate with an I/O device?

Command DataDevice Registers: Status interface

Canonical I/O Device

Micro-controller (CPU)

Memory (DRAM or SRAM or both)

Other Hardware-specific Chips

internals

OS reads/writes to these

Hardware Interface Of Canonical Device

7

status register
• See the current status of the device

command register
• Tell the device to perform a certain task

data register
• Pass data to the device, or get data from the device

By reading or writing the three registers, OS controls device
behavior

Hardware Interface Of Canonical Device

8

Typical interaction example

while (STATUS == BUSY)

; //wait until device is not

busy write data to data register

write command to command register

Doing so starts the device and executes the

command while (STATUS == BUSY)

; //wait until device is done with your request

Programming a device

9

One approach: I/O instructions
• in and out instructions on x86
• Devices usually have registers

o places commands, addresses, and data there to read/write registers
• How to identify (address) a device?

o With a port location (I/O address range)

Typical Device I/O Port Locations

10

X86 i/O instruction

11

static inline uint8_t inb (uint16_t port)

{

uint8_t data;

asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port));

return data;

}

static inline void outb (uint16_t

{

asm volatile ("outb %b0, %w1" :

}

port, uint8_t data)

: "a" (data), "Nd" (port));

static inline void insw (uint16_t

{

asm volatile ("rep insw" : "+D"

port, void *addr, size_t cnt)

(addr), "+c" (cnt)

: "d" (port) : "memory");

}

Pintos threads/io.h

IDE Disk Driver

12

void IDE_ReadSector(int disk, int off,

void *buf)

{

// Select Drive

== 0 ? 0xE0 : 0xF0);outb(0x1F6, disk

IDEWait();

// Read length (1 sector = 512 B)

// LBA low

1);

off);

off >>

off >>

0x20);

8); // LBA mid

16); // LBA high

// Read command

outb(0x1F2,

outb(0x1F3,

outb(0x1F4,

outb(0x1F5,

outb(0x1F7,

insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()

{

// Discard status 4 times

inb(0x1F7);

inb(0x1F7);

inb(0x1F7);

inb(0x1F7);

// Wait for

while ((inb(0x1F7)

status BUSY flag to clear

& 0x80) != 0);

}

Memory-mapped IO

13

• OS must map physical to virtual addresses, ensure non-cachable

volatile int32_t *device_control

= (int32_t *) (0xc0100 + PHYS_BASE);

*device_control = 0x80;

int32_t status = *device_control;

in/out instructions slow and clunky
• Instruction format restricts what registers you can use
• Only allows 216 different port numbers

Another approach: Memory-mapped I/O
• Device registers available as if they were memory locations. load (to read) or
store (to write) goes to the device instead of main memory.

Polling

14

OS waits until the device is ready by repeatedly reading the status register
• Positive aspect is simple and working.
• However, it wastes CPU time just waiting for the device

o Switching to another ready process is better utilizing the CPU

1 1 1 1 1 P P P P P 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO”

Interrupts

15

Put the I/O request process to sleep and context switch to another

When the device is finished, wake the process by interrupt
• CPU and the disk are properly utilized

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt

1 1 1 1 1

: task 11 : task 22

Polling vs Interrupts

16

However, “interrupts is not always the best solution”
• If, device performs very quickly, interrupt will “slow down” the system.

E.g., high network packet arrival rate
• Packets can arrive faster than OS can process them
• Interrupts are very expensive (context switch)
• Interrupt handlers have high priority
• In worst case, can spend 100% of time in interrupt handler and never make any

progress

Adaptive switching between interrupts and polling

If a device is fast → poll is best
If it is slow → interrupt is better

One More Problem: Data Copying

17

CPU wastes a lot of time in copying large data from memory to a
device register one byte a time (termed programmed I/O, PIO)

CPU

Disk

Diagram of CPU utilization

1 1 1 1 1

“over-burdened” : task 11 : task 22

C : copy data fr

1 1 1 1 C C C 2 2 2 2 2 1 1 1

om memory

DMA (Direct Memory Access)

18

Buffer descriptor list

Idea: only use CPU to transfer control requests, not data

Include list of buffer locations in main memory
• Device reads list and accesses buffers through DMA

DMA (Direct Memory Access) Cont.

19

When completed, DMA raises an interrupt, I/O begins on Disk.

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1

Diagram of CPU utilization by DMA

1 1 1 1 1

C C C

CPU

DMA

Disk

: task 11 : task 22

C : copy data from memory

Direct Memory Access

20

Avoid programmed I/O for large data movement

Requires DMA controller

Bypasses CPU to transfer data directly between I/O device and memory

OS writes DMA command block into memory
• Source and destination addresses
• Read or write mode
• Count of bytes
• Writes location of command block to DMA controller

Device Registers:

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Device Protocol Variants

21

Status checks: polling vs. interrupts

Command: special instructions vs. memory-mapped I/O

Data: programmed I/O (PIO) vs. direct memory access (DMA)

Command DataStatus

Canonical I/O Device

Hard Disk

22

Basic Interface

23

Disk interface presents linear array of sectors
• Historically 512 Bytes
• Written atomically (even if there is a power failure)
• 4 KiB in “advanced format” disks

o Torn write: If an untimely power loss occurs, only a portion of a larger write may complete

Disk maps logical sector #s to physical sectors

OS doesn’t know logical to physical sector mapping

Basic Geometry

24

Platter (Aluminum coated with a thin magnetic layer)
• A circular hard surface
• Data is stored persistently by inducing magnetic changes to it
• Each platter has 2 sides, each of which is called a surface

Basic Geometry (Cont.)

25

Spindle
• Spindle is connected to a motor that spins the platters around
• The rate of rotations is measured in RPM (Rotations Per Minute)

o Typical modern values : 7,200 RPM to 15,000 RPM.

Track
• Concentric circles of sectors
• Data is encoded on each surface in a track
• A single surface contains many thousands and thousands of tracks

Cylinder
• A stack of tracks of fixed radius
• Heads record and sense data along cylinders
• Generally only one head active at a time

Cylinders, Tracks, & Sectors

26

A Simple Disk Drive

27

1

3 2

A Single Track Plus A Head

4

5

6 11

0

spindle

Rotates this way

8 9

7 10

Disk head (one head per surface of the drive)
• The process of reading and writing is accomplished by the disk head
• Attached to a single disk arm, which moves across the surface

Single-track Latency

28

1

3 2

A Single Track Plus A Head

4

5

6 11

0

spindle

Rotates this way

8 9

7 10

Rotational delay: Time for the desired sector to rotate
• Full rotational delay is Rand we start at sector 6

o Read sector 0: Rotational delay = 𝑅
2

o Read sector 5: Rotational delay = R-1 (worst case.)

Multiple Tracks

29

13 5
4 3

2 10

17

18

23 16

15 8
2214 7 0 9

6 1

21
12 11

20 19

Let’s Read 12!

Multiple Tracks: Seek To Right Track

30

Let’s Read 12!

Multiple Tracks: Seek To Right Track

31

Let’s Read 12!

Multiple Tracks: Seek To Right Track

32

Let’s Read 12!

Multiple Tracks: Wait for Rotation

33

Let’s Read 12!

Multiple Tracks: Wait for Rotation

34
1

6
7

0

5
4

3

9

2 1
0

1
4

1
6

8
1

7

1
8

1
1 1

9

2
3 1
5

2
2

1
3

2
1

1
2

2
0

Let’s Read 12!

Multiple Tracks: Wait for Rotation

35

Let’s Read 12!

Multiple Tracks: Wait for Rotation

36

Let’s Read 12!

37

Multiple Tracks: Wait for Rotation

Let’s Read 12!

38

Multiple Tracks: Transfer Data

Let’s Read 12!

Multiple Tracks: Transfer Data

39

Let’s Read 12!

Multiple Tracks: Transfer Data

40

Let’s Read 12!

Yay!

41

Multiple Tracks: Seek Time

42

1

3

5

8

9

10
13

2
14

15

16
4

17

20

22

0

12

25

26

27

28

2930

18

6

31

19

7

21 33

32

11

23

35

34

24

1

2

5

6

7

8

11

0

13

14

17

18

19

10

22

23

25
27 26

15

3

28

16

4

30

29

9

20 21

32 33
31 34

35

24 12
spindle spindle

Rotates this way Rotates this way

Seek: Move the disk arm to the correct track
• Seek time: Time to move head to the track contain the desired sector.
• One of the most costly disk operations.

Seek, Rotate, Transfer

43

Acceleration → Coasting → Deceleration → Settling
• Acceleration: The disk arm gets moving.
• Coasting: The arm is moving at full speed.
• Deceleration: The arm slows down.
• Settling: The head is carefully positioned over the correct track.

Seeks often take several milliseconds!
• settling alone can take 0.5 to 2ms.
• entire seek often takes 4 - 10 ms.

Seek, Rotate, Transfer

44

Depends on rotations per minute (RPM)
• 7200 RPM is common, 15000 RPM is high-end.

With 7200 RPM, how long to rotate around?
• 1 / 7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3 ms /

rotation

Average rotation?
• 8.3 ms / 2 = 4.15 ms

Seek, Rotate, Transfer

45

The final phase of I/O
• Data is either read from or written to the surface.

Pretty fast — depends on RPM and sector density

100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?
• 512 bytes * (1s / 100 MB) = 5 𝜇𝑠

Workload

46

So…
• seeks are slow
• rotations are slow
• transfers are fast

What kind of workload is fastest for disks?
• Sequential: access sectors in order (transfer dominated)
• Random: access sectors arbitrarily (seek + rotation dominated)

Disk Scheduling

47

21

33

27

15

3

6 18 30

10

22

34
11

23
35

24 12 0

26

25
13

1
14

2

28
17

29

16

4

5

31
19

20

32
7

8

Spindle

Rotates this way

9

Disk Scheduler decides which I/O request to schedule next

Disk Scheduling: FCFS

48

“First Come First Served”
• Process disk requests in the order they are received

Advantages
• Easy to implement
• Good fairness

Disadvantages
• Cannot exploit request locality
• Increases average latency, decreasing throughput

FCFS Example

49

SSTF(Shortest Seek Time First)

50

Order the queue of I/O request by track

Pick requests on the nearest track to complete first
• Also called shortest positioning time first (SPTF)

Advantages
• Exploits locality of disk requests
• Higher throughput

Disadvantages
• Starvation
• Don’t always know what request will be fastest

SSTF Example

51

“Elevator” Scheduling (SCAN)

52

Sweep across disk, servicing all requests passed
• Like SSTF, but next seek must be in same direction
• Switch directions only if no further requests

Advantages
• Takes advantage of locality
• Bounded waiting

Disadvantages
• Cylinders in the middle get better service
• Might miss locality SSTF could exploit

CSCAN: Only sweep in one direction
• Very commonly used algorithm in Unix

CSCAN example

53

Flash Memory

54

Today, people increasingly using flash memory

Completely solid state (no moving parts)
• Remembers data by storing charge
• Lower power consumption and heat
• No mechanical seek times to worry about

Limited # overwrites possible
• Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
• Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to

logical block don’t wear out physical block
• FTL can seriously impact performance

Limited durability
• Charge wears out over time
• Turn off device for a year, you can potentially lose data!

Next Time…

55

Read Chapter 39, 40

	Slide 1: Lecture 15: I/O & Disks Fall 2025
	Slide 2: Overview
	Slide 3: I/O Devices
	Slide 4: Structure of Input/Output (I/O) Device
	Slide 5: Structure of I/O Device
	Slide 6: Device Interaction
	Slide 7: Hardware Interface Of Canonical Device
	Slide 8: Hardware Interface Of Canonical Device
	Slide 9: Programming a device
	Slide 10: Typical Device I/O Port Locations
	Slide 11: X86 i/O instruction
	Slide 12: IDE Disk Driver
	Slide 13: Memory-mapped IO
	Slide 14: Polling
	Slide 15: Interrupts
	Slide 16: Polling vs Interrupts
	Slide 17: One More Problem: Data Copying
	Slide 18: DMA (Direct Memory Access)
	Slide 19: DMA (Direct Memory Access) Cont.
	Slide 20: Direct Memory Access
	Slide 21: Device Protocol Variants
	Slide 22: Hard Disk
	Slide 23: Basic Interface
	Slide 24: Basic Geometry
	Slide 25: Basic Geometry (Cont.)
	Slide 26: Cylinders, Tracks, & Sectors
	Slide 27: A Simple Disk Drive
	Slide 28: Single-track Latency
	Slide 29: Multiple Tracks
	Slide 30: Multiple Tracks: Seek To Right Track
	Slide 31: Multiple Tracks: Seek To Right Track
	Slide 32: Multiple Tracks: Seek To Right Track
	Slide 33: Multiple Tracks: Wait for Rotation
	Slide 34: Multiple Tracks: Wait for Rotation
	Slide 35: Multiple Tracks: Wait for Rotation
	Slide 36: Multiple Tracks: Wait for Rotation
	Slide 37
	Slide 38
	Slide 39: Multiple Tracks: Transfer Data
	Slide 40: Multiple Tracks: Transfer Data
	Slide 41: Yay!
	Slide 42: Multiple Tracks: Seek Time
	Slide 43: Seek, Rotate, Transfer
	Slide 44: Seek, Rotate, Transfer
	Slide 45: Seek, Rotate, Transfer
	Slide 46: Workload
	Slide 47: Disk Scheduling
	Slide 48: Disk Scheduling: FCFS
	Slide 49: FCFS Example
	Slide 50: SSTF(Shortest Seek Time First)
	Slide 51: SSTF Example
	Slide 52: “Elevator” Scheduling (SCAN)
	Slide 53: CSCAN example
	Slide 54: Flash Memory
	Slide 55: Next Time…

