CE 440 Introduction to Operating System

Lecture 15; 1/0 & Disks
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Overview

We’ve covered OS abstractions for CPU and memory so far

/ Virtualization \ / Concurrency \ KPersistence \

Processes Threads /O
Scheduling Synchronization Disks
Virtual Memory Semaphores and Monitors

/ K / \ File Systems /

I/0 management is another major component of OS
* |mportant aspect of computer operation

* |/O devices vary greatly: various methods to control them
* New types of devices

/0O Devices

&
®

Issues to address:
* How should I/O be integrated into systems?
* What are the general mechanisms?
* How can we manage them efficiently?

Structure of Input/Output (1/0) Device

Memory Bus
(proprietary)

General 1/0O Bus
(e.g., PCI)

Peripheral 1/0 Bus
(e.g., SCSI, SATA, USB)

Structure of I/O Device

P PPN

monitor processor
cache
ggﬁ,ﬁg:f:r bric(l:%i/trrr:ﬁ?rory memory SCSI controller
| PCI bus
IDE disk controller expansion bus keyboard
interface
@ @ { expansion bus
@ @ parallel serial
port port

Device Interaction

How does the OS communicate with an I/O device?

OS reads/writes to these

Device Regstrs erface

Micro-controller (CPU)

Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

Canonicall/O Device

Hardware Interface Of Canonical Device

status register
e Seethe current status of the device

command register
* Tellthe device to perform a certain task

data register
* Passdata to the device, or get data from the device

By reading or writing the three registers, OS controls device
behavior

Hardware Interface Of Canonical Device

Typicalinteraction example

while (STATUS == BUSY)

; //wait until device is not
busy write data to data register
write command to command register

Doing so starts the device and executes the

command while (STATUS == BUSY)

; //walit until device 1s done with your request

Programming a device

One approach: I/0 instructions
* in and out instructions on x86
* Devices usually have registers
o places commands, addresses, and data there to read/write registers
* How to identify (address) a device?
o With a port location (I/0O address range)

Typical Device |I/O Port Locations

|/O address range (hexadecimal) device
000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

10

X86 i/O instruction

static inline uint8 t inb (ulntl6 t port)
{
uint8 t data;

asm volatile ("inb %wl, %b0" : "=a" (data) : "Nd" (port)):
return data;

static inline void outb (uintl6 t port, uint8 t data)
{
asm volatile ("outb %b0, Swl" : : "a" (data), "Nd" (port)):;

static inline void insw (uintl6 t port, void *addr, size t cnt)
{
asm volatile ("rep insw" : "+D" (addr), "+c" (cnt)
"d" (port) : "memory");

Pintos threads/io0.h

11

IDE Disk Driver

void IDE ReadSector (int disk, int off,

{

void *buf)

// Select Drive
outb (0x1F6, disk == 0 ? OxEO
IDEWait () ;
// Read length
outb (0x1F2, 1);
outb (0x1F3, off); // LBA low
outb (0x1F4, off >> 8); // LBA mid
outb (0x1F5, off >> 16); // LBA high
(
(

OxFO) ;

(1 sector = 512 B)

outb (0x1F7, 0x20); // Read command
insw (0x1F0, buf, 256); // Read 256 words

void IDEWait ()

{

// Discard status 4 times

inb (0x1F7); inb (0x1F7);

inb (0x1F7); inb (0x1F7);

// Wait for status BUSY flag to clear
while ((inb (0x1F7) & 0x80) != 0);

12

Memory-mapped IO

in/out instructions slow and clunky

* Instruction format restricts what registers you can use
* Only allows 276 different port numbers

Another approach: Memory-mapped /0
* Device registers available as if they were memory locations. 1oad (to read) or
store (to write) goes to the device instead of main memory.

volatile int32 t *device control

= (int32 t *) (0xc0100 + PHYS BASE);
*device control = 0x80;
int32 t status = *device control;

* OS must map physicalto virtual addresses, ensure non-cachable

13

Polling

OS waits until the device is ready by repeatedly reading the status register
* Positive aspectis simple and working.
* However, it wastes CPU time just waiting for the device
o Switching to another ready process is better utilizing the CPU

(13 't' IO”
waring 1 | :task1 | P | :poling

CPU i|j1(1(12(2|P|P|P|P|P|1|1|2]|1]1

Disk 111111111

Diagram of CPU utilization by polling

14

Interrupts

Put the I/0 request process to sleep and context switch to another

When the device is finished, wake the process by interrupt

* CPU andthe disk are properly utilized

: task 1

CPU 111111122222 1|1

Disk 111111111

- task 2

Diagram of CPU utilization by interrupt

15

Polling vs Interrupts

However, “interrupts is not always the best solution”
* |f, device performs very quickly, interrupt will “slow down” the system.

If a device is fast — pollis best
Ifitis slow — interruptis better

E.g., high network packet arrival rate

* Packets can arrive faster than OS can process them
* Interrupts are very expensive (context switch)
* Interrupt handlers have high priority

* |n worstcase, can spend 100% of time in interrupt handler and never make any
progress

Adaptive switching between interrupts and polling

16

One More Problem: Data Copying

CPU wastes a lot of time in copying large data from memory to a
device register one byte a time (termed programmed 1/0, PlO)

“over-burdened” 1 |:task 1 | 2 | :task 2

C | : copy data from memory

CPU 1111|111]C|C|C|2|2[2|2|[2|1]|1]1

Disk 1T{1T1 1111

Diagram of CPU utilization

17

DMA (Dlrect Memory Access)

Memory buffers

100 F————

4

1400 —m

I

1500 —

4

1500 —m

Buffer descriptor list ——

Idea: only use CPU to transfer control requests, not data

Include list of buffer locations in main memory
* Device reads list and accesses buffers through DMA

18

DMA (Direct Memory Access) Cont.

When completed, DMA raises an interrupt, 1/0 begins on Disk.

1 | :task 1 2 | :task 2

C | : copy data from memory

CPU 1111122222 |2[2[2|1]|1]1

DMA

Disk

1111111

Diagram of CPU utilization by DMA

Direct Memory Access

Avoid programmed 1/0 for large data movement

Requires DMA controller

Bypasses CPU to transfer data directly between |/0 device and memory

OS writes DMA command block into memory
* Source and destination addresses
* Read or write mode
e Count of bytes

e Writes location of command block to DMA controller

20

Device Protocol Variants

Device Registers: Status Command Data

Micro-controller (CPU)
Memory (DRAM or SRAM or both)
Other Hardware-specific Chips

Canonicall/0O Device

Status checks: polling vs. interrupts
Command: special instructions vs. memory-mapped I/0

Data: programmed I/0 (P10) vs. direct memory access (DMA)

21

Hard Disk

22

Basic Interface

Disk interface presents linear array of sectors

 Historically 512 Bytes
* Written atomically (even if there is a power failure)

* 4KiBin*“advanced format” disks
o Torn write: If an untimely power loss occurs, only a portion of a larger write may complete

Disk maps logical sector #s to physical sectors

OS doesn’t know logical to physical sector mapping

23

Basic Geometry

- D) i»

Platter (Aluminum coated with a thin magnetic layer)
* Acircular hard surface
* Datais stored persistently by inducing magnetic changes to it
* Each platter has 2 sides, each of which is called a surface

24

Basic Geometry (Cont.)

Spindle

* Spindleis connected to a motor that spins the platters around

* The rate of rotations is measured in RPM (Rotations Per Minute)
o Typical modern values: 7,200 RPM to 15,000 RPM.

Track
 Concentric circles of sectors
* Datais encodedoneach surface in a track
* Asingle surface contains many thousands and thousands of tracks

Cylinder
* A stack of tracks of fixed radius
* Heads record and sense data along cylinders
* Generally only one head active at atime

25

Cylinders, Tracks, & Sectors

track t «— spindle
E ..t
| TS| <— arm assembly
sector s ! |
I
' 4
|
| |
I I
I I]
cylinder ¢ —» | read-write
' | head
I I
I
Q I
platter
D

rotation
26

A Simple Disk Drive

Rotates this way

A Single Track Plus A Head

Disk head (one head per surface of the drive)
* The process of reading and writing is accomplished by the disk head
* Attached to a single disk arm, which moves across the surface

27

Single-track Latency

thates this way

A Single Track Plus A Head
Rotational delay: Time for the desired sector to rotate
* Full rotational delay is Rand we start at sector 6

o Read sector 0: Rotational delay =§
o Read sector 5: Rotational delay = R-1 (worst case.)

28

Let’s Read 12!

Multiple Tracks

29

Multiple Tracks: Seek To Right Track

Let’s Read 12!

Multiple Tracks: Seek To Right Track

Let’s Read 12!

Multiple Tracks: Seek To Right Track

Let’s Read 12!

Multiple Tracks: Wait for Rotation

Let’s Read 12!

Multiple Tracks: Wait for Rotation

Let’s Read 12!

Multiple Tracks: Wait for Rotation

Let’s Read 12!

Multiple Tracks: Wait for Rotation

Let’s Read 12!

Multiple Tracks: Wait for Rotation

SR
iy

Let’s Read 12!

Multiple Tracks: Transfer Data

Let’s Read 12!

(TS
*

Multiple Tracks: Transfer Data

Let’s Read 12!

39

Multiple Tracks: Transfer Data

Let’s Read 12!

Multiple Tracks: Seek Time

thates this way Rgtates this way

Seek: Move the disk arm to the correct track
« Seektime: Time to move head to the track contain the desired sector.
* One of the most costly disk operations.

42

Seek, Rotate, Transfer

Acceleration —» Coasting — Deceleration — Settling
* Acceleration: The disk arm gets moving.
* Coasting: The arm is moving at full speed.
* Deceleration: The arm slows down.
» Settling: The head is carefully positioned over the correct track.

Seeks often take several milliseconds!

* settling alone can take 0.5 to 2ms.
* entire seek often takes 4 - 10 ms.

43

Seek, Rotate, Transfer

Depends on rotations per minute (RPM)
e 7200 RPMis common, 15000 RPMis high-end.

With 7200 RPM, how long to rotate around?
e 1/7200 RPM =1 minute/ 7200 rotations = 1 second/ 120 rotations =8.3 ms/
rotation

Average rotation?
e 83ms/2=4.15ms

44

Seek, Rotate, Transfer
The final phase of /0

e Datais either read from or written to the surface.

Pretty fast — depends on RPM and sector density
100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?
* 512 bytes *(1s/100MB) =5 us

45

Workload
So...

e seeks are slow
e rotations are slow
 transfers are fast

What kind of workload is fastest for disks?

e Sequential: access sectors in order (transfer dominated)
* Random: access sectors arbitrarily (seek + rotation dominated)

46

Disk Scheduling

Rgtates this way

Disk Scheduler decides which 1/0 request to schedule next

47

Disk Scheduling: FCFS

“First Come First Served”
* Process disk requests in the order they are received

Advantages
* Easytoimplement
* (Good fairness

Disadvantages
 Cannot exploit request locality
* |ncreases average latency, decreasing throughput

48

— O

14

FCFS Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124 183199
| L1 | I |

49

SSTF(Shortest Seek Time First)

Order the queue of I/0 request by track

Pick requests on the nearest track to complete first
* Also called shortest positioning time first (SPTF)

Advantages
* Exploits locality of disk requests
* Higher throughput

Disadvantages
e Starvation
 Don’t always know what request will be fastest

50

14

SSTF Example

queue = 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53

37 536567 98 122124
| |1l | I

183199
|

— O

51

“Elevator” Scheduling (SCAN)

Sweep across disk, servicing all requests passed
 Like SSTF, but next seek must be in same direction
* Switch directions only if no further requests

Advantages
* Takes advantage of locality
* Bounded waiting

Disadvantages
* Cylindersinthe middle get better service
 Might miss locality SSTF could exploit

CSCAN: Only sweep in one direction
* Very commonly used algorithm in Unix

52

CSCAN example

queue 98, 183, 37, 122, 14, 124, 65, 67
head starts at 53
14 37 536567 08 122124 183199

I I [I L I I

— O

53

Flash Memory

Today, people increasingly using flash memory

Completely solid state (no moving parts)
* Remembers data by storing charge
* Lower power consumption and heat
* No mechanical seek times to worry about

Limited # overwrites possible
* Blocks wear out after 10,000 (MLC) - 100,000 (SLC) erases

 Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to
logical block don’t wear out physical block
* FTL can seriously impact performance

Limited durability
* Charge wears out over time
* Turn off device for a year, you can potentially lose data! 54

Read Chapter 39, 40

Next Time...

55

	Slide 1: Lecture 15: I/O & Disks Fall 2025
	Slide 2: Overview
	Slide 3: I/O Devices
	Slide 4: Structure of Input/Output (I/O) Device
	Slide 5: Structure of I/O Device
	Slide 6: Device Interaction
	Slide 7: Hardware Interface Of Canonical Device
	Slide 8: Hardware Interface Of Canonical Device
	Slide 9: Programming a device
	Slide 10: Typical Device I/O Port Locations
	Slide 11: X86 i/O instruction
	Slide 12: IDE Disk Driver
	Slide 13: Memory-mapped IO
	Slide 14: Polling
	Slide 15: Interrupts
	Slide 16: Polling vs Interrupts
	Slide 17: One More Problem: Data Copying
	Slide 18: DMA (Direct Memory Access)
	Slide 19: DMA (Direct Memory Access) Cont.
	Slide 20: Direct Memory Access
	Slide 21: Device Protocol Variants
	Slide 22: Hard Disk
	Slide 23: Basic Interface
	Slide 24: Basic Geometry
	Slide 25: Basic Geometry (Cont.)
	Slide 26: Cylinders, Tracks, & Sectors
	Slide 27: A Simple Disk Drive
	Slide 28: Single-track Latency
	Slide 29: Multiple Tracks
	Slide 30: Multiple Tracks: Seek To Right Track
	Slide 31: Multiple Tracks: Seek To Right Track
	Slide 32: Multiple Tracks: Seek To Right Track
	Slide 33: Multiple Tracks: Wait for Rotation
	Slide 34: Multiple Tracks: Wait for Rotation
	Slide 35: Multiple Tracks: Wait for Rotation
	Slide 36: Multiple Tracks: Wait for Rotation
	Slide 37
	Slide 38
	Slide 39: Multiple Tracks: Transfer Data
	Slide 40: Multiple Tracks: Transfer Data
	Slide 41: Yay!
	Slide 42: Multiple Tracks: Seek Time
	Slide 43: Seek, Rotate, Transfer
	Slide 44: Seek, Rotate, Transfer
	Slide 45: Seek, Rotate, Transfer
	Slide 46: Workload
	Slide 47: Disk Scheduling
	Slide 48: Disk Scheduling: FCFS
	Slide 49: FCFS Example
	Slide 50: SSTF(Shortest Seek Time First)
	Slide 51: SSTF Example
	Slide 52: “Elevator” Scheduling (SCAN)
	Slide 53: CSCAN example
	Slide 54: Flash Memory
	Slide 55: Next Time…

