
Lecture 15: I/O & Disks

Fall 2025                            

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci



Overview
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We’ve covered OS abstractions for CPU and memory so far

I/O management is another major component of OS
• Important aspect of computer operation
• I/O devices vary greatly: various methods to control them
• New types of devices

Virtualization

Processes

Scheduling 

Virtual Memory

Concurrency

Threads

Synchronization 

Semaphores and Monitors

Persistence

I/O

Disks

File Systems



I/O Devices
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…

Issues to address:
• How should I/O be integrated into systems?
• What are the general mechanisms?
• How can we manage them efficiently?



Structure of Input/Output (I/O) Device
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CPU Memory

Memory Bus 
(proprietary)

General I/O Bus 
(e.g., PCI)

Peripheral I/O Bus 
(e.g., SCSI, SATA, USB)

Graphics



Structure of I/O Device
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Device Interaction
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How does the OS communicate with an I/O device?

Command DataDevice Registers: Status interface

Canonical I/O Device

Micro-controller (CPU)

Memory (DRAM or SRAM or both) 

Other Hardware-specific Chips

internals

OS reads/writes to these



Hardware Interface Of Canonical Device

7

status register
• See the current status of the device

command register
• Tell the device to perform a certain task

data register
• Pass data to the device, or get data from the device

By reading or writing the three registers, OS controls device 
behavior



Hardware Interface Of Canonical Device
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Typical interaction example

while (STATUS == BUSY)

; //wait until device is not

busy write data to data register

write command to command register

Doing so starts the device and executes the

command while (STATUS == BUSY)

; //wait until device is done with your request



Programming a device

9

One approach: I/O instructions
• in and out instructions on x86
• Devices usually have registers

o places commands, addresses, and data there to read/write registers
• How to identify (address) a device?

o With a port location (I/O address range)



Typical Device I/O Port Locations
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X86 i/O instruction
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static inline uint8_t inb (uint16_t port)

{

uint8_t data;

asm volatile ("inb %w1, %b0" : "=a" (data) : "Nd" (port)); 

return data;

}

static inline void outb (uint16_t

{

asm volatile ("outb %b0, %w1" :

}

port, uint8_t data)

: "a" (data), "Nd" (port));

static inline void insw (uint16_t

{

asm volatile ("rep insw" : "+D"

port, void *addr, size_t cnt)

(addr), "+c" (cnt)

: "d" (port) : "memory");

}

Pintos threads/io.h



IDE Disk Driver
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void IDE_ReadSector(int disk, int off,

void *buf)

{

// Select Drive

== 0 ? 0xE0 : 0xF0);outb(0x1F6, disk 

IDEWait();

// Read length (1 sector = 512 B)

// LBA low

1);

off); 

off >> 

off >> 

0x20);

8); // LBA mid

16); // LBA high

// Read command

outb(0x1F2,

outb(0x1F3,

outb(0x1F4,

outb(0x1F5,

outb(0x1F7,

insw(0x1F0, buf, 256); // Read 256 words

}

void IDEWait()

{

// Discard status 4 times

inb(0x1F7); 

inb(0x1F7);

inb(0x1F7); 

inb(0x1F7);

// Wait for

while ((inb(0x1F7)

status BUSY flag to clear 

& 0x80) != 0);

}



Memory-mapped IO
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• OS must map physical to virtual addresses, ensure non-cachable

volatile int32_t *device_control

= (int32_t *) (0xc0100 + PHYS_BASE);

*device_control = 0x80;

int32_t status = *device_control;

in/out instructions slow and clunky
• Instruction format restricts what registers you can use
• Only allows 216 different port numbers

Another approach: Memory-mapped I/O
• Device registers available as if they were memory locations. load (to read) or
store (to write) goes to the device instead of main memory.



Polling
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OS waits until the device is ready by repeatedly reading the status register
• Positive aspect is simple and working.
• However, it wastes CPU time just waiting for the device

o Switching to another ready process is better utilizing the CPU

1 1 1 1 1 P P P P P 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by polling

1 1 1 1 1

: task 11 : pollingP
“waiting IO”



Interrupts
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Put the I/O request process to sleep and context switch to another

When the device is finished, wake the process by interrupt
• CPU and the disk are properly utilized

1 1 1 1 1 2 2 2 2 2 1 1 1 1 1CPU

Disk

Diagram of CPU utilization by interrupt

1 1 1 1 1

: task 11 : task 22



Polling vs Interrupts
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However, “interrupts is not always the best solution”
• If, device performs very quickly, interrupt will “slow down” the system.

E.g., high network packet arrival rate
• Packets can arrive faster than OS can process them
• Interrupts are very expensive (context switch)
• Interrupt handlers have high priority
• In worst case, can spend 100% of time in interrupt handler and never make any 

progress

Adaptive switching between interrupts and polling

If a device is fast → poll is best 
If it is slow → interrupt is better



One More Problem: Data Copying
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CPU wastes a lot of time in copying large data from memory to a 
device register one byte a time (termed programmed I/O, PIO)

CPU

Disk

Diagram of CPU utilization

1 1 1 1 1

“over-burdened” : task 11 : task 22

C : copy data fr

1 1 1 1 C C C 2 2 2 2 2 1 1 1

om memory



DMA (Direct Memory Access)
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Buffer descriptor list

Idea: only use CPU to transfer control requests, not data

Include list of buffer locations in main memory
• Device reads list and accesses buffers through DMA



DMA (Direct Memory Access) Cont.
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When completed, DMA raises an interrupt, I/O begins on Disk.

1 1 1 1 2 2 2 2 2 2 2 2 1 1 1

Diagram of CPU utilization by DMA

1 1 1 1 1

C C C

CPU

DMA

Disk

: task 11 : task 22

C : copy data from memory



Direct Memory Access 
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Avoid programmed I/O for large data movement

Requires DMA controller

Bypasses CPU to transfer data directly between I/O device and memory

OS writes DMA command block into memory
• Source and destination addresses
• Read or write mode
• Count of bytes
• Writes location of command block to DMA controller



Device Registers:

Micro-controller (CPU)
Memory (DRAM or SRAM or both) 
Other Hardware-specific Chips

Device Protocol Variants
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Status checks: polling vs. interrupts

Command: special instructions vs. memory-mapped I/O

Data: programmed I/O (PIO) vs. direct memory access (DMA)

Command DataStatus

Canonical I/O Device



Hard Disk
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Basic Interface
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Disk interface presents linear array of sectors
• Historically 512 Bytes
• Written atomically (even if there is a power failure)
• 4 KiB in “advanced format” disks

o Torn write: If an untimely power loss occurs, only a portion of a larger write may complete

Disk maps logical sector #s to physical sectors

OS doesn’t know logical to physical sector mapping



Basic Geometry
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Platter (Aluminum coated with a thin magnetic layer)
• A circular hard surface
• Data is stored persistently by inducing magnetic changes to it
• Each platter has 2 sides, each of which is called a surface



Basic Geometry (Cont.)
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Spindle
• Spindle is connected to a motor that spins the platters around
• The rate of rotations is measured in RPM (Rotations Per Minute)

o Typical modern values : 7,200 RPM to 15,000 RPM.

Track
• Concentric circles of sectors
• Data is encoded on each surface in a track
• A single surface contains many thousands and thousands of tracks

Cylinder
• A stack of tracks of fixed radius
• Heads record and sense data along cylinders
• Generally only one head active at a time



Cylinders, Tracks, & Sectors
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A Simple Disk Drive
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1

3 2

A Single Track Plus A Head

4

5

6 11

0

spindle

Rotates this way

8 9

7 10

Disk head (one head per surface of the drive)
• The process of reading and writing is accomplished by the disk head
• Attached to a single disk arm, which moves across the surface



Single-track Latency
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1

3 2

A Single Track Plus A Head

4

5

6 11

0

spindle

Rotates this way

8 9

7 10

Rotational delay: Time for the desired sector to rotate
• Full rotational delay is Rand we start at sector 6

o Read sector 0: Rotational delay = 𝑅
2

o Read sector 5: Rotational delay = R-1 (worst case.)



Multiple Tracks
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13 5
4 3

2 10

17

18

23 16

15 8
2214 7 0 9

6 1

21
12 11

20 19

Let’s Read 12!



Multiple Tracks: Seek To Right Track
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Let’s Read 12!



Multiple Tracks: Seek To Right Track
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Let’s Read 12!



Multiple Tracks: Seek To Right Track
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Let’s Read 12!



Multiple Tracks: Wait for Rotation 
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Let’s Read 12!



Multiple Tracks: Wait for Rotation
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6
7

0

5
4

3

9

2 1
0

1
4

1
6

8
1

7

1
8

1
1 1

9

2
3 1
5

2
2

1
3

2
1

1
2

2
0

Let’s Read 12!



Multiple Tracks: Wait for Rotation
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Let’s Read 12!



Multiple Tracks: Wait for Rotation
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Let’s Read 12!
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Multiple Tracks: Wait for Rotation

Let’s Read 12!
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Multiple Tracks: Transfer Data

Let’s Read 12!



Multiple Tracks: Transfer Data
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Let’s Read 12!



Multiple Tracks: Transfer Data
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Let’s Read 12!



Yay!

41



Multiple Tracks: Seek Time
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8

9

10
13

2
14

15

16
4

17

20

22

0

12

25

26

27

28

2930

18

6

31

19

7

21 33

32

11

23

35

34

24
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6

7

8

11

0

13

14

17

18

19

10

22

23

25
27 26

15

3

28

16

4

30

29

9

20 21

32 33
31 34

35

24 12
spindle spindle

Rotates this way Rotates this way

Seek: Move the disk arm to the correct track
• Seek time: Time to move head to the track contain the desired sector.
• One of the most costly disk operations.



Seek, Rotate, Transfer
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Acceleration → Coasting → Deceleration → Settling
• Acceleration: The disk arm gets moving.
• Coasting: The arm is moving at full speed.
• Deceleration: The arm slows down.
• Settling: The head is carefully positioned over the correct track.

Seeks often take several milliseconds!
• settling alone can take 0.5 to 2ms.
• entire seek often takes 4 - 10 ms.



Seek, Rotate, Transfer
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Depends on rotations per minute (RPM)
• 7200 RPM is common, 15000 RPM is high-end.

With 7200 RPM, how long to rotate around?
• 1 / 7200 RPM = 1 minute / 7200 rotations = 1 second / 120 rotations = 8.3 ms / 

rotation

Average rotation?
• 8.3 ms / 2 = 4.15 ms



Seek, Rotate, Transfer
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The final phase of I/O
• Data is either read from or written to the surface.

Pretty fast — depends on RPM and sector density

100+ MB/s is typical for maximum transfer rate

How long to transfer 512-bytes?
• 512 bytes * (1s / 100 MB) = 5 𝜇𝑠



Workload
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So…
• seeks are slow
• rotations are slow
• transfers are fast

What kind of workload is fastest for disks?
• Sequential: access sectors in order (transfer dominated)
• Random: access sectors arbitrarily (seek + rotation dominated)



Disk Scheduling
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9

Disk Scheduler decides which I/O request to schedule next



Disk Scheduling: FCFS
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“First Come First Served”
• Process disk requests in the order they are received

Advantages
• Easy to implement
• Good fairness

Disadvantages
• Cannot exploit request locality
• Increases average latency, decreasing throughput



FCFS Example
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SSTF(Shortest Seek Time First)
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Order the queue of I/O request by track

Pick requests on the nearest track to complete first
• Also called shortest positioning time first (SPTF)

Advantages
• Exploits locality of disk requests
• Higher throughput

Disadvantages
• Starvation
• Don’t always know what request will be fastest



SSTF Example
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“Elevator” Scheduling (SCAN)
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Sweep across disk, servicing all requests passed
• Like SSTF, but next seek must be in same direction
• Switch directions only if no further requests

Advantages
• Takes advantage of locality
• Bounded waiting

Disadvantages
• Cylinders in the middle get better service
• Might miss locality SSTF could exploit

CSCAN: Only sweep in one direction
• Very commonly used algorithm in Unix



CSCAN example
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Flash Memory
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Today, people increasingly using flash memory

Completely solid state (no moving parts)
• Remembers data by storing charge
• Lower power consumption and heat
• No mechanical seek times to worry about

Limited # overwrites possible
• Blocks wear out after 10,000 (MLC) – 100,000 (SLC) erases
• Requires flash translation layer (FTL) to provide wear leveling, so repeated writes to 

logical block don’t wear out physical block
• FTL can seriously impact performance

Limited durability
• Charge wears out over time
• Turn off device for a year, you can potentially lose data!



Next Time…
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Read Chapter 39, 40
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