CE 440 Introduction to Operating System

Lecture 16: File System
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

Lab 3a and 3b is out
« Startthe project early

Homework 4 is out

Recap: I/O & Disks

OS reads/writes to these

Micro-controller (CPU)
Memory (DRAM or SRAM or both) internals
Other Hardware-specific Chips

Canonicall/O Device

Status checks: polling vs. interrupts
Command: special instructions vs. memory-mapped I/0

Data: programmed I/0 (P10) vs. direct memory access (DMA)

Recap: I/O & Disks

track f <«— spindle

sector s

I

! |

I I

. I I
cylinder ¢ —>! |
I |

[

|

platter

rotation

read-write
head

iy,

— arm assembly

Rotates this way

/"'

Seek, rotate, transfer

File System K6t Fun

File systems: a challenging OS design topic
* More papers on FSes than any other single topic

Main tasks of file system:
* Don’t go away (ever)
* Associate bytes with name (files)
 Associate names with each other (directories)

e Canimplement file systems on disk, over network, in memory, in non-volatile
* ram (NVRAM), on tape, w/ paper.
* We’'ll focus on disk and generalize later

Today: files, directories

File System Abstraction

File system specifics of which disk class it is using.
* |tissues block read and write request to the generic block layer.

Application user
POSIX API [open, read, write, close, etc]
. kernel
File System r
[1
L Generic Block Interface [block read/write] J
Generic Block Layer
{Specific Block Interface [protocol-specific read/write] }
Device Driver [SCSI, ATA, etc] The File System Stack

Hard Drive

Files

File: named bytes on disk
 Datawith some properties
 Contents, size, owner, last read/write time, protection, etc.

How is a file’s data managed by the file system?
* Next lecture’s topic
* Basicidea (in Unix): a struct called an index node or inode
* Describe where on the disk the blocks for a file are placed
* Disk stores an array of inodes, inode # is the index in this array

File Types

A file can also have a type
* Understood by the file system .
o Block, character, device, portal, link, etc.
 Understood by other parts of the OS or runtime libraries
o Executable, dll, source, object, text, etc.

A file’s type can be encoded in its name or contents
* Windows encodes type in name (.com, .exe, .bat, .dll, .jpg, etc.)
* Unix encodes type in contents (magic numbers, initial characters, e.g., #! for
shell scripts)

Basic File Operations

Unix

creat(hame)
open(name, how)
read(fd, buf, len)
write(fd, buf, len)
sync(fd)

seek(fd, pos)
close(fd)

unlink(name)

Windows

CreateFile(name, CREATE)

CreateFile(name, OPEN)

ReadFile(handle, ...)
WriteFile(handle, ...)

FlushFileBuffers(handle, ..

SetFilePointer(handle, ..

CloseHandle(handle, ..

DeleteFile(name)
CopyFile(name)

MoveFile(hame)

)

)

)

File Access Methods

FS usually provides different file access methods:

e Sequential access
o read bytes one at atime, in order
o by farthe mostcommon mode

* Random access
o random access given block/byte number

* Record access
o file is array of fixed- or variable-length records
o read/written sequentially or randomly by record #

* |Indexed access
o file system contains an index to a particular field of each record in a file
o reads specify a value for that field and the system finds the record via the index

What file access method does Unix, Windows provide?

10

Directories

Problem: referencing files

Users remember where on disk their files are (disk sector no.)?...
* E.g., likeremembering your social security or bank account #

...People want human digestible names

Directories serve two purposes

* Forusers, they provide a structured way to organize files
* ForFS, they provide a convenient naming interface that allows the separation of
logical file organization from physical file placement on the disk

11

A Short History of Directories

Approach 1: Single directory for entire system
* Putdirectory at known disk location. If one user uses a name, no one else can
* Many ancient personal computers work this way

Approach 2: Single directory for each user
e Stillclumsy, and running Ils on 10,000 files is a real pain

Approach 3: Hierarchical name spaces
* Allow directory to map names to files or other dirs
* File system forms a tree (or graph, if links allowed)

12

Hierarchical Directory

Used since CTSS (1960s)

* Unix picked up and used really nicely
/

AR S

afs bin cdrom dev sbin tmp

awk chmod chown

Large name spaces tend to be hierarchical
* ip addresses, domain names, scoping in programming languages, etc.

13

Directory Internals

A directory is a list of entries
* <name, location> tuple, location is typically the inode # (more next lecture)
* Aninode describes where on the disk the blocks for a file are placed

Directories stored on disk just like regular files

* File type set to directory /) File content for */

* User’s canread just like any other file /N <afs,1021>

* Only special syscalls can write (why?) afs bin cdrom dev sbin tmp | <tmp,1020>

* File pointed to by the location may be another dir <bin, 1022>
. : . awk chmod chown | <cdrom,4123>

* Makes FSinto hierarchical tree <dev,1001>

<sbin,1011>

Simple, plus speeding up file ops speeds up dir ops!

14

Path Name Translation

Let’s say you want to open “/one/two/three.txt”

What does the file system do?
* Directory entries map file names to location (inode #)
* Open directory “/”: Where? Root directory is always inode #2
 Search forthe entry “one”, get location of “one” (in dir entry)
* Open directory “one”, search for “two”, get location of “two”
* Open directory “two”, search for “three”, get location of “three”
* Open file “three”

15

Naming Magic

Bootstrapping: Where do you start looking?
* Root directory always inode #2 (0 and 1 historically reserved)

Special names:
* Rootdirectory: “/”

€€

* Current directory: “

€ »

* Parent directory: “.

Some special names are provided by shell, not FS:

 User’s home directory: “~”
* Globbing: “foo.*” expands to all files starting “foo.”

Using the given names, only need two operations to navigate the entire name space:
* cdname: move into (change context to) directory name
* [s: enumerate all names in current directory (context)

16

Basic Directory Operations

Unix o
Windows

Directories implemented in files

. Use file ops to create dirs. Explicit directory operations

* CreateDirectory (name)

)] . * RemoveDirectory (name)
C library provides a higher-level abstraction

for reading directories Very different method for reading directory entries
* opendir (name) * FindFirstFile (pattern)
* readdir (DIR) * FindNextFile ()

* seekdir (DIR)
* closedir (DIR)

17

Default Context: Working Directory

Cumbersome to constantly specify full path names
* |n Unix, each process has a “current working directory” (cwd)
* File names not beginning with “/” are assumed to be relative to cwd; otherwise
translation happens as before

Shells track a default list of active contexts

* A“search path” for programs you run
* Given a search path A:B:C, the shell will check in A, then B, then C
 Can escape using explicit paths: “./foo”

Example of locality

18

Hard Links

More than one dir entry can refer to a given file
* Hard link creates a synonym for file
* Unix stores count of pointers (“hard links”) to inode
* |f one of the links is removed (e.g., rm), the data are still accessible through any other

link that remains
* |f all links are removed, the space occupied by the datais freed.

existing file link to create

N/

1ln foo bar

foo bar

/

inode #31279
refcount = 2

19

Soft Links

Soft/symbolic links = synonyms for names

Point to a file/dir name, but object can be deleted from
underneath it (or never exist).

Unix implements like directories: inode has special
“symlink” bit set and contains name of link target
When the file system encounters a soft link it
automatically translates it (if possible).

1n foo bar

foo bar «

N/

inode #31279

\
|
refcount = 2 :
|
|
I
I
I
]
/
(11 b} /
barz— bar .
refcount = 1

ln —-s bar barz

20

File Sharing

File sharing has been around since timesharing
* Easytodo on asingle machine
 PCs, workstations, and networks get us there (mostly)

File sharing is important for getting work done
* Basis for communication and synchronization

Two key issues when sharing files
* Semantics of concurrent access
o What happens when one process reads while another writes?
o What happens when two processes open a file for writing?
o What are we going to use to coordinate?
* Protection

21

Protection

File systems implement a protection system
* Who can access afile
* How they can access it

More generally...
 Objects are “what”, subjects are “who”, actions are “how”

A protection system dictates whether a given action performed by a given

subject on a given object should be allowed
* You can read and/or write your files, but others cannot
* You canread “/etc/motd”, but you cannot write it

22

Representing Protection

Access Control Lists (ACL) Capabilities
For each object, maintain a list For each subject, maintain a list
of subjects and their of objects and their permitted
permitted actions actions
Objects
Jone \\‘ ftwo | /three
| Alice frw - rw
Subjects 151 wo |- r | Capability
¢]Charlie |w /|r wo
a1 e

23

ACLs and Capabilities

Approaches differ only in how the table is represented

Capabilities are easier to transfer
* They are like keys, can handoff, does not depend on subject

In practice, ACLs are easier to manage
* Object-centric, easy to grant, revoke

* To revoke capabilities, have to keep track of all subjects that have the capability
—a challenging problem

ACLs have a problem when objects are heavily shared
* The ACLs become very large
 Use groups (e.g., Unix)

24

What approach does Unix use in the FS?

Unix File Protection

Answer: both

ACL: Unixfile permissions

Capability: file descriptors

How are they used together?

Conversion through open()system call

Converted to
capability ACL check, expensive

int fd = open!"file.txt", O _WRONLY) ;
)

if (fd = -1
exit (-1);

for (int 1 = 0; 1 < 100; i++)
write (fd, buf + 1 * 4, 4);

S

Use capability from then on

25

Overview

File System Implementation

26

Why Disks Are Different

Disk = First state we’ve seen that doesn’t go away

 So:Where all important state ultimately resides y %d.) \
memor IS

Slow (milliseconds access vs. nanoseconds for memory)

improvement Processor speed: 2 x/18mo

Disk access time: 7% /yr

. > year
Huge (100-1,000x bigger than memory)

* Howto organize large collection of ad hoc information?
* File System: Hierarchical directories, Metadata, Search

27

Disk vs. Memory

Disk MLC NAND DRAM
Flash

Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 3-10 us 50 ns
Random write 8 ms 9-11 us* 50 ns
Sequential read 100 MB/s 550-2500 MB/s >1 GB/s
Sequential write 100 MB/s 520-1500 MB/s* > 1 GB/s
Cost $0.03/GB $0.35/GB $6/GiB
Persistence Non-volatile Non-volatile Volatile

*. Flash write performance degrades over time

28

Disk Review

Disk reads/writes in terms of sectors, not bytes
* Read/write single sector or adjacent groups.

How to write a single byte? “Read-modify-write”

* Read in sector containing the byte ‘
* Modify that byte

* Write entire sector back to disk
 Key: if cached, don’t need to read in ‘

= |
B |

Sector = unit of atomicity.

* Sectorwrite done completely, even if crash in middle (disk saves up
enough momentum to complete)

Larger atomic units have to be synthesized by OS

Some Useful Trends (1)

Disk bandwidth and cost/bit improving exponentially
* Similarto CPU speed, memory size, etc.

Seek time and rotational delay improving very slowly
* Why? require moving physical object (disk arm)

Disk access is a huge system bottleneck & getting worse

 Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as
small chunk.
* Trade bandwidth for latency if you can get lots of related stuff.

30

Some Useful Trends (2)

Desktop memory size increasing faster than typical workloads
* More and more of workload fits in file cache
* Disk traffic changes: mostly writes and new data

Memory and CPU resources increasing
* Use memory and CPU to make better decisions
e Complex prefetching to support more IO patterns
 Delay data placement decisions reduce random IO

31

Goal

Want: operations to have as few disk accesses as possible & have
minimal space overhead (group related things)

What’s hard about grouping blocks?

Like page tables, file system metadata constructs mappings
* Page table: map virtual page # to physical page #
* File metadata: map byte offset to disk block address
* Directory: map name to disk address or file #

32

File Systems vs. Virtual Memory

In both settings, want location transparency
* Application shouldn’t care about particular.disk blocks or physical memory
locations

In some ways, FS has easier job than VM:

e CPUtime to do FS mappings not a big deal (why?) -TLB
 Page tables deal with sparse address spaces and random access, files often
denser (0. .. filesize— 1), ~sequentially accessed

In some ways, FS’s problem is harder:
 Each layer of translation = potential disk access
* Space a huge premium! (But disk is huge?!?!)
o Cache space never enough; amount of data you can get in one fetch never enough
* Range very extreme: Many files < 10 KB, some files GB

33

Some Working Intuitions

FS performance dominated by # of disk accesses
e Sayeach access costs ~10 milliseconds
* Touchthe disk 100 times =1 second
e Cando abillion ALU ops in same time!

Access cost dominated by movement, not transfer:
* 1sector:5ms+4ms+5us (=512 B/(100 MB/s)) = 9ms
* 50 sectors: 5ms +4ms + .25ms =9.25ms
* Can get 50x the data for only ~3% more overhead!

Observations that might be helpful:
* Allblocksinfile tend to be used together, sequentially
* Allfilesina directory tend to be used together
* Allnamesin adirectory tend to be used together

34

Summary

Files
 Operations, access methods

Directories
* Operations, using directories to do path searches

Sharing

Protection
 ACLs vs. capabilities

35

Read Chapter 40, 41

Next Chapter

36

	Slide 1: Lecture 16: File System Fall 2025
	Slide 2: Administrivia
	Slide 3: Recap: I/O & Disks
	Slide 4: Recap: I/O & Disks
	Slide 5: File System Not Fun
	Slide 6: File System Abstraction
	Slide 7: Files
	Slide 8: File Types
	Slide 9: Basic File Operations
	Slide 10: File Access Methods
	Slide 11: Directories
	Slide 12: A Short History of Directories
	Slide 13: Hierarchical Directory
	Slide 14: Directory Internals
	Slide 15: Path Name Translation
	Slide 16: Naming Magic
	Slide 17: Basic Directory Operations
	Slide 18: Default Context: Working Directory
	Slide 19: Hard Links
	Slide 20: Soft Links
	Slide 21: File Sharing
	Slide 22: Protection
	Slide 23: Representing Protection
	Slide 24: ACLs and Capabilities
	Slide 25: Unix File Protection
	Slide 26: Overview
	Slide 27: Why Disks Are Different
	Slide 28: Disk vs. Memory
	Slide 29: Disk Review
	Slide 30: Some Useful Trends (1)
	Slide 31: Some Useful Trends (2)
	Slide 32: Goal
	Slide 33: File Systems vs. Virtual Memory
	Slide 34: Some Working Intuitions
	Slide 35: Summary
	Slide 36: Next Chapter

