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Administrivia
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Lab 3a and 3b is out
• Start the project early

Homework 4 is out 



Recap: I/O & Disks
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Command DataDevice Registers: Status interface

Canonical I/O Device

Micro-controller (CPU)

Memory (DRAM or SRAM or both) 

Other Hardware-specific Chips

internals

OS reads/writes to these

Status checks: polling vs. interrupts

Command: special instructions vs. memory-mapped I/O

Data: programmed I/O (PIO) vs. direct memory access (DMA)



Recap: I/O & Disks
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Rotates this way

Seek, rotate, transfer



File System Not Fun
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File systems: a challenging OS design topic
• More papers on FSes than any other single topic

Main tasks of file system:
• Don’t go away (ever)
• Associate bytes with name (files)
• Associate names with each other (directories)
• Can implement file systems on disk, over network, in memory, in non-volatile
• ram (NVRAM), on tape, w/ paper.
• We’ll focus on disk and generalize later

Today: files, directories



File System Abstraction
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File system specifics of which disk class it is using.
• It issues block read and write request to the generic block layer.

The File System Stack

kernel

Application

File System

Device Driver [SCSI, ATA, etc]

Generic Block Interface [block read/write]

Generic Block Layer

Specific Block Interface [protocol-specific read/write]

user

POSIX API [open, read, write, close, etc]

Hard Drive



Files 
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File: named bytes on disk
• Data with some properties
• Contents, size, owner, last read/write time, protection, etc.

How is a file’s data managed by the file system?
• Next lecture’s topic
• Basic idea (in Unix): a struct called an index node or inode

• Describe where on the disk the blocks for a file are placed
• Disk stores an array of inodes, inode # is the index in this array



File Types
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A file can also have a type
• Understood by the file system

o Block, character, device, portal, link, etc.
• Understood by other parts of the OS or runtime libraries

o Executable, dll, source, object, text, etc.

A file’s type can be encoded in its name or contents
• Windows encodes type in name (.com, .exe, .bat, .dll, .jpg, etc.)
• Unix encodes type in contents (magic numbers, initial characters, e.g., #! for 

shell scripts)



Basic File Operations
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Unix

• creat(name)

• open(name, how)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

Windows

• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)



File Access Methods
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FS usually provides different file access methods:
• Sequential access

o read bytes one at a time, in order
o by far the most common mode

• Random access
o random access given block/byte number

• Record access
o file is array of fixed- or variable-length records
o read/written sequentially or randomly by record #

• Indexed access
o file system contains an index to a particular field of each record in a file
o reads specify a value for that field and the system finds the record via the index

What file access method does Unix, Windows provide?



Directories
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Problem: referencing files

Users remember where on disk their files are (disk sector no.)?…
• E.g., like remembering your social security or bank account #

…People want human digestible names

Directories serve two purposes
• For users, they provide a structured way to organize files
• For FS, they provide a convenient naming interface that allows the separation of 

logical file organization from physical file placement on the disk



A Short History of Directories
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Approach 1: Single directory for entire system
• Put directory at known disk location. If one user uses a name, no one else can
• Many ancient personal computers work this way

Approach 2: Single directory for each user
• Still clumsy, and running `ls` on 10,000 files is a real pain

Approach 3: Hierarchical name spaces
• Allow directory to map names to files or other dirs
• File system forms a tree (or graph, if links allowed)



Used since CTSS (1960s)
• Unix picked up and used really nicely

                                                           /

Large name spaces tend to be hierarchical
• ip addresses, domain names, scoping in programming languages, etc.

Hierarchical Directory
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bin cdrom dev sbin tmp

awk chmod chown

afs



Directory Internals
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A directory is a list of entries
• <name, location> tuple, location is typically the inode # (more next lecture)
• An inode describes where on the disk the blocks for a file are placed

Directories stored on disk just like regular files
• File type set to directory
• User’s can read just like any other file
• Only special syscalls can write (why?)
• File pointed to by the location may be another dir
• Makes FS into hierarchical tree

Simple, plus speeding up file ops speeds up dir ops!

afs bin cdrom dev sbin tmp

awk chmod chown

/ File content for ‘/’

<afs,1021>

<tmp,1020>
<bin,1022>
<cdrom,4123>

<dev,1001>
<sbin,1011>

…



Path Name Translation
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Let’s say you want to open “/one/two/three.txt”

What does the file system do?
• Directory entries map file names to location (inode #)
• Open directory “/”: Where? Root directory is always inode #2
• Search for the entry “one”, get location of “one” (in dir entry)
• Open directory “one”, search for “two”, get location of “two”
• Open directory “two”, search for “three”, get location of “three”
• Open file “three”



Naming Magic
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Bootstrapping: Where do you start looking?
• Root directory always inode #2 (0 and 1 historically reserved)

Special names:
• Root directory: “/”
• Current directory: “.”
• Parent directory: “..”

Some special names are provided by shell, not FS:
• User’s home directory: “∼”
• Globbing: “foo.*” expands to all files starting “foo.”

Using the given names, only need two operations to navigate the entire name space:
• cd name: move into (change context to) directory name
• ls: enumerate all names in current directory (context)



Basic Directory Operations
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Unix

Directories implemented in files
• Use file ops to create dirs.

C library provides a higher-level abstraction
for reading directories

• opendir(name)

• readdir(DIR)

• seekdir(DIR)

• closedir(DIR)

Windows

Explicit directory operations
• CreateDirectory(name)

• RemoveDirectory(name)

Very different method for reading directory entries
• FindFirstFile(pattern)

• FindNextFile()



Default Context: Working Directory
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Cumbersome to constantly specify full path names
• In Unix, each process has a “current working directory” (cwd)
• File names not beginning with “/” are assumed to be relative to cwd; otherwise 

translation happens as before

Shells track a default list of active contexts
• A “search path” for programs you run
• Given a search path A:B:C, the shell will check in A, then B, then C
• Can escape using explicit paths: “./foo”

Example of locality



Hard Links
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More than one dir entry can refer to a given file
• Hard link creates a synonym for file
• Unix stores count of pointers (“hard links”) to inode
• If one of the links is removed (e.g., rm), the data are still accessible through any other 

link that remains
• If all links are removed, the space occupied by the data is freed.

inode #31279

refcount = 2

ln foo bar

link to createexisting file

foo bar



Soft Links
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Soft/symbolic links = synonyms for names
• Point to a file/dir name, but object can be deleted from 

underneath it (or never exist).
• Unix implements like directories: inode has special 

“symlink” bit set and contains name of link target
• When the file system encounters a soft link it 

automatically translates it (if possible).

inode #31279

refcount = 2

ln –s bar barz

“bar” 

refcount = 1

ln foo bar

foo bar

barz



File Sharing
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File sharing has been around since timesharing
• Easy to do on a single machine
• PCs, workstations, and networks get us there (mostly)

File sharing is important for getting work done
• Basis for communication and synchronization

Two key issues when sharing files
• Semantics of concurrent access

o What happens when one process reads while another writes?
o What happens when two processes open a file for writing?
o What are we going to use to coordinate?

• Protection



Protection
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File systems implement a protection system
• Who can access a file
• How they can access it

More generally…
• Objects are “what”, subjects are “who”, actions are “how”

A protection system dictates whether a given action performed by a given 
subject on a given object should be allowed

• You can read and/or write your files, but others cannot
• You can read “/etc/motd”, but you cannot write it



Representing Protection
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Access Control Lists (ACL)

For each object, maintain a list 
of subjects and their 
permitted actions

Capabilities

For each subject, maintain a list
of objects and their permitted
actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects
Capability

Objects

ACL



ACLs and Capabilities

24

Approaches differ only in how the table is represented

Capabilities are easier to transfer
• They are like keys, can handoff, does not depend on subject

In practice, ACLs are easier to manage
• Object-centric, easy to grant, revoke
• To revoke capabilities, have to keep track of all subjects that have the capability 

– a challenging problem

ACLs have a problem when objects are heavily shared
• The ACLs become very large
• Use groups (e.g., Unix)



Unix File Protection
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What approach does Unix use in the FS?
• Answer: both

ACL: Unix file permissions

Capability: file descriptors

How are they used together?
• Conversion through open() system call

int fd = open("file.txt", O_WRONLY);

if (fd == -1) 

exit(-1);

for (int i = 0; i < 100; i++) 

write(fd, buf + i * 4, 4);

ACL check, expensive

Use capability from then on

Converted to

capability



Overview
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• File System Abstraction

• File System Implementation



Why Disks Are Different
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Huge (100–1,000x bigger than memory)
• How to organize large collection of ad hoc information?
• File System: Hierarchical directories, Metadata, Search

Disk = First state we’ve seen that doesn’t go away
• So: Where all important state ultimately resides

Slow (milliseconds access vs. nanoseconds for memory)

improvement



Disk vs. Memory
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Disk
MLC NAND

Flash
DRAM

Smallest write sector sector byte

Atomic write sector sector byte/word

Random read 8 ms 3-10 µs 50 ns

Random write 8 ms 9-11 µs* 50 ns

Sequential read 100 MB/s 550–2500 MB/s > 1 GB/s

Sequential write 100 MB/s 520–1500 MB/s* > 1 GB/s

Cost $0.03/GB $0.35/GB $6/GiB

Persistence Non-volatile Non-volatile Volatile

*: Flash write performance degrades over time



Disk Review
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Disk reads/writes in terms of sectors, not bytes
• Read/write single sector or adjacent groups

How to write a single byte? “Read-modify-write”
• Read in sector containing the byte
• Modify that byte
• Write entire sector back to disk
• Key: if cached, don’t need to read in

Sector = unit of atomicity.
• Sector write done completely, even if crash in middle (disk saves up

enough momentum to complete)

Larger atomic units have to be synthesized by OS



Some Useful Trends (1)
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Disk bandwidth and cost/bit improving exponentially
• Similar to CPU speed, memory size, etc.

Seek time and rotational delay improving very slowly
• Why? require moving physical object (disk arm)

Disk access is a huge system bottleneck & getting worse
• Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as 

small chunk.
• Trade bandwidth for latency if you can get lots of related stuff.



Some Useful Trends (2)
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Desktop memory size increasing faster than typical workloads
• More and more of workload fits in file cache
• Disk traffic changes: mostly writes and new data

Memory and CPU resources increasing
• Use memory and CPU to make better decisions
• Complex prefetching to support more IO patterns
• Delay data placement decisions reduce random IO



Goal
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Want: operations to have as few disk accesses as possible & have 
minimal space overhead (group related things)

What’s hard about grouping blocks?

Like page tables, file system metadata constructs mappings
• Page table: map virtual page # to physical page #
• File metadata: map byte offset to disk block address
• Directory: map name to disk address or file #



File Systems vs. Virtual Memory
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In both settings, want location transparency
• Application shouldn’t care about particular disk blocks or physical memory 

locations

In some ways, FS has easier job than VM:
• CPU time to do FS mappings not a big deal (why?) →TLB
• Page tables deal with sparse address spaces and random access, files often 

denser (0 . . . filesize− 1), ∼sequentially accessed

In some ways, FS’s problem is harder:
• Each layer of translation = potential disk access
• Space a huge premium! (But disk is huge?!?!)

o Cache space never enough; amount of data you can get in one fetch never enough
• Range very extreme: Many files < 10 KB, some files GB



Some Working Intuitions
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FS performance dominated by # of disk accesses
• Say each access costs ∼10 milliseconds
• Touch the disk 100 times = 1 second
• Can do a billion ALU ops in same time!

Access cost dominated by movement, not transfer:
• 1 sector: 5𝑚𝑠 + 4𝑚𝑠 + 5µ𝑠 (≈ 512 𝐵/(100 𝑀𝐵/𝑠)) ≈ 9𝑚𝑠
• 50 sectors: 5𝑚𝑠 + 4𝑚𝑠 + .25𝑚𝑠 = 9.25𝑚𝑠
• Can get 50x the data for only ∼3% more overhead!

Observations that might be helpful:
• All blocks in file tend to be used together, sequentially
• All files in a directory tend to be used together
• All names in a directory tend to be used together



Summary
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Files 
•  Operations, access methods

 Directories 
•  Operations, using directories to do path searches
•  
Sharing 

Protection 
• ACLs vs. capabilities



Next Chapter
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Read Chapter 40, 41
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