
Lecture 16: File System

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

2

Lab 3a and 3b is out
• Start the project early

Homework 4 is out

Recap: I/O & Disks

3

Command DataDevice Registers: Status interface

Canonical I/O Device

Micro-controller (CPU)

Memory (DRAM or SRAM or both)

Other Hardware-specific Chips

internals

OS reads/writes to these

Status checks: polling vs. interrupts

Command: special instructions vs. memory-mapped I/O

Data: programmed I/O (PIO) vs. direct memory access (DMA)

Recap: I/O & Disks

4

Rotates this way

Seek, rotate, transfer

File System Not Fun

5

File systems: a challenging OS design topic
• More papers on FSes than any other single topic

Main tasks of file system:
• Don’t go away (ever)
• Associate bytes with name (files)
• Associate names with each other (directories)
• Can implement file systems on disk, over network, in memory, in non-volatile
• ram (NVRAM), on tape, w/ paper.
• We’ll focus on disk and generalize later

Today: files, directories

File System Abstraction

6

File system specifics of which disk class it is using.
• It issues block read and write request to the generic block layer.

The File System Stack

kernel

Application

File System

Device Driver [SCSI, ATA, etc]

Generic Block Interface [block read/write]

Generic Block Layer

Specific Block Interface [protocol-specific read/write]

user

POSIX API [open, read, write, close, etc]

Hard Drive

Files

7

File: named bytes on disk
• Data with some properties
• Contents, size, owner, last read/write time, protection, etc.

How is a file’s data managed by the file system?
• Next lecture’s topic
• Basic idea (in Unix): a struct called an index node or inode

• Describe where on the disk the blocks for a file are placed
• Disk stores an array of inodes, inode # is the index in this array

File Types

8

A file can also have a type
• Understood by the file system

o Block, character, device, portal, link, etc.
• Understood by other parts of the OS or runtime libraries

o Executable, dll, source, object, text, etc.

A file’s type can be encoded in its name or contents
• Windows encodes type in name (.com, .exe, .bat, .dll, .jpg, etc.)
• Unix encodes type in contents (magic numbers, initial characters, e.g., #! for

shell scripts)

Basic File Operations

9

Unix

• creat(name)

• open(name, how)

• read(fd, buf, len)

• write(fd, buf, len)

• sync(fd)

• seek(fd, pos)

• close(fd)

• unlink(name)

Windows

• CreateFile(name, CREATE)

• CreateFile(name, OPEN)

• ReadFile(handle, …)

• WriteFile(handle, …)

• FlushFileBuffers(handle, …)

• SetFilePointer(handle, …)

• CloseHandle(handle, …)

• DeleteFile(name)

• CopyFile(name)

• MoveFile(name)

File Access Methods

10

FS usually provides different file access methods:
• Sequential access

o read bytes one at a time, in order
o by far the most common mode

• Random access
o random access given block/byte number

• Record access
o file is array of fixed- or variable-length records
o read/written sequentially or randomly by record #

• Indexed access
o file system contains an index to a particular field of each record in a file
o reads specify a value for that field and the system finds the record via the index

What file access method does Unix, Windows provide?

Directories

11

Problem: referencing files

Users remember where on disk their files are (disk sector no.)?…
• E.g., like remembering your social security or bank account #

…People want human digestible names

Directories serve two purposes
• For users, they provide a structured way to organize files
• For FS, they provide a convenient naming interface that allows the separation of

logical file organization from physical file placement on the disk

A Short History of Directories

12

Approach 1: Single directory for entire system
• Put directory at known disk location. If one user uses a name, no one else can
• Many ancient personal computers work this way

Approach 2: Single directory for each user
• Still clumsy, and running `ls` on 10,000 files is a real pain

Approach 3: Hierarchical name spaces
• Allow directory to map names to files or other dirs
• File system forms a tree (or graph, if links allowed)

Used since CTSS (1960s)
• Unix picked up and used really nicely

 /

Large name spaces tend to be hierarchical
• ip addresses, domain names, scoping in programming languages, etc.

Hierarchical Directory

13

bin cdrom dev sbin tmp

awk chmod chown

afs

Directory Internals

14

A directory is a list of entries
• <name, location> tuple, location is typically the inode # (more next lecture)
• An inode describes where on the disk the blocks for a file are placed

Directories stored on disk just like regular files
• File type set to directory
• User’s can read just like any other file
• Only special syscalls can write (why?)
• File pointed to by the location may be another dir
• Makes FS into hierarchical tree

Simple, plus speeding up file ops speeds up dir ops!

afs bin cdrom dev sbin tmp

awk chmod chown

/ File content for ‘/’

<afs,1021>

<tmp,1020>
<bin,1022>
<cdrom,4123>

<dev,1001>
<sbin,1011>

…

Path Name Translation

15

Let’s say you want to open “/one/two/three.txt”

What does the file system do?
• Directory entries map file names to location (inode #)
• Open directory “/”: Where? Root directory is always inode #2
• Search for the entry “one”, get location of “one” (in dir entry)
• Open directory “one”, search for “two”, get location of “two”
• Open directory “two”, search for “three”, get location of “three”
• Open file “three”

Naming Magic

16

Bootstrapping: Where do you start looking?
• Root directory always inode #2 (0 and 1 historically reserved)

Special names:
• Root directory: “/”
• Current directory: “.”
• Parent directory: “..”

Some special names are provided by shell, not FS:
• User’s home directory: “∼”
• Globbing: “foo.*” expands to all files starting “foo.”

Using the given names, only need two operations to navigate the entire name space:
• cd name: move into (change context to) directory name
• ls: enumerate all names in current directory (context)

Basic Directory Operations

17

Unix

Directories implemented in files
• Use file ops to create dirs.

C library provides a higher-level abstraction
for reading directories

• opendir(name)

• readdir(DIR)

• seekdir(DIR)

• closedir(DIR)

Windows

Explicit directory operations
• CreateDirectory(name)

• RemoveDirectory(name)

Very different method for reading directory entries
• FindFirstFile(pattern)

• FindNextFile()

Default Context: Working Directory

18

Cumbersome to constantly specify full path names
• In Unix, each process has a “current working directory” (cwd)
• File names not beginning with “/” are assumed to be relative to cwd; otherwise

translation happens as before

Shells track a default list of active contexts
• A “search path” for programs you run
• Given a search path A:B:C, the shell will check in A, then B, then C
• Can escape using explicit paths: “./foo”

Example of locality

Hard Links

19

More than one dir entry can refer to a given file
• Hard link creates a synonym for file
• Unix stores count of pointers (“hard links”) to inode
• If one of the links is removed (e.g., rm), the data are still accessible through any other

link that remains
• If all links are removed, the space occupied by the data is freed.

inode #31279

refcount = 2

ln foo bar

link to createexisting file

foo bar

Soft Links

20

Soft/symbolic links = synonyms for names
• Point to a file/dir name, but object can be deleted from

underneath it (or never exist).
• Unix implements like directories: inode has special

“symlink” bit set and contains name of link target
• When the file system encounters a soft link it

automatically translates it (if possible).

inode #31279

refcount = 2

ln –s bar barz

“bar”

refcount = 1

ln foo bar

foo bar

barz

File Sharing

21

File sharing has been around since timesharing
• Easy to do on a single machine
• PCs, workstations, and networks get us there (mostly)

File sharing is important for getting work done
• Basis for communication and synchronization

Two key issues when sharing files
• Semantics of concurrent access

o What happens when one process reads while another writes?
o What happens when two processes open a file for writing?
o What are we going to use to coordinate?

• Protection

Protection

22

File systems implement a protection system
• Who can access a file
• How they can access it

More generally…
• Objects are “what”, subjects are “who”, actions are “how”

A protection system dictates whether a given action performed by a given
subject on a given object should be allowed

• You can read and/or write your files, but others cannot
• You can read “/etc/motd”, but you cannot write it

Representing Protection

23

Access Control Lists (ACL)

For each object, maintain a list
of subjects and their
permitted actions

Capabilities

For each subject, maintain a list
of objects and their permitted
actions

/one /two /three

Alice rw - rw

Bob w - r

Charlie w r rw

Subjects
Capability

Objects

ACL

ACLs and Capabilities

24

Approaches differ only in how the table is represented

Capabilities are easier to transfer
• They are like keys, can handoff, does not depend on subject

In practice, ACLs are easier to manage
• Object-centric, easy to grant, revoke
• To revoke capabilities, have to keep track of all subjects that have the capability

– a challenging problem

ACLs have a problem when objects are heavily shared
• The ACLs become very large
• Use groups (e.g., Unix)

Unix File Protection

25

What approach does Unix use in the FS?
• Answer: both

ACL: Unix file permissions

Capability: file descriptors

How are they used together?
• Conversion through open() system call

int fd = open("file.txt", O_WRONLY);

if (fd == -1)

exit(-1);

for (int i = 0; i < 100; i++)

write(fd, buf + i * 4, 4);

ACL check, expensive

Use capability from then on

Converted to

capability

Overview

26

• File System Abstraction

• File System Implementation

Why Disks Are Different

27

Huge (100–1,000x bigger than memory)
• How to organize large collection of ad hoc information?
• File System: Hierarchical directories, Metadata, Search

Disk = First state we’ve seen that doesn’t go away
• So: Where all important state ultimately resides

Slow (milliseconds access vs. nanoseconds for memory)

improvement

Disk vs. Memory

28

Disk
MLC NAND

Flash
DRAM

Smallest write sector sector byte

Atomic write sector sector byte/word

Random read 8 ms 3-10 µs 50 ns

Random write 8 ms 9-11 µs* 50 ns

Sequential read 100 MB/s 550–2500 MB/s > 1 GB/s

Sequential write 100 MB/s 520–1500 MB/s* > 1 GB/s

Cost $0.03/GB $0.35/GB $6/GiB

Persistence Non-volatile Non-volatile Volatile

*: Flash write performance degrades over time

Disk Review

29

Disk reads/writes in terms of sectors, not bytes
• Read/write single sector or adjacent groups

How to write a single byte? “Read-modify-write”
• Read in sector containing the byte
• Modify that byte
• Write entire sector back to disk
• Key: if cached, don’t need to read in

Sector = unit of atomicity.
• Sector write done completely, even if crash in middle (disk saves up

enough momentum to complete)

Larger atomic units have to be synthesized by OS

Some Useful Trends (1)

30

Disk bandwidth and cost/bit improving exponentially
• Similar to CPU speed, memory size, etc.

Seek time and rotational delay improving very slowly
• Why? require moving physical object (disk arm)

Disk access is a huge system bottleneck & getting worse
• Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as

small chunk.
• Trade bandwidth for latency if you can get lots of related stuff.

Some Useful Trends (2)

31

Desktop memory size increasing faster than typical workloads
• More and more of workload fits in file cache
• Disk traffic changes: mostly writes and new data

Memory and CPU resources increasing
• Use memory and CPU to make better decisions
• Complex prefetching to support more IO patterns
• Delay data placement decisions reduce random IO

Goal

32

Want: operations to have as few disk accesses as possible & have
minimal space overhead (group related things)

What’s hard about grouping blocks?

Like page tables, file system metadata constructs mappings
• Page table: map virtual page # to physical page #
• File metadata: map byte offset to disk block address
• Directory: map name to disk address or file #

File Systems vs. Virtual Memory

33

In both settings, want location transparency
• Application shouldn’t care about particular disk blocks or physical memory

locations

In some ways, FS has easier job than VM:
• CPU time to do FS mappings not a big deal (why?) →TLB
• Page tables deal with sparse address spaces and random access, files often

denser (0 . . . filesize− 1), ∼sequentially accessed

In some ways, FS’s problem is harder:
• Each layer of translation = potential disk access
• Space a huge premium! (But disk is huge?!?!)

o Cache space never enough; amount of data you can get in one fetch never enough
• Range very extreme: Many files < 10 KB, some files GB

Some Working Intuitions

34

FS performance dominated by # of disk accesses
• Say each access costs ∼10 milliseconds
• Touch the disk 100 times = 1 second
• Can do a billion ALU ops in same time!

Access cost dominated by movement, not transfer:
• 1 sector: 5𝑚𝑠 + 4𝑚𝑠 + 5µ𝑠 (≈ 512 𝐵/(100 𝑀𝐵/𝑠)) ≈ 9𝑚𝑠
• 50 sectors: 5𝑚𝑠 + 4𝑚𝑠 + .25𝑚𝑠 = 9.25𝑚𝑠
• Can get 50x the data for only ∼3% more overhead!

Observations that might be helpful:
• All blocks in file tend to be used together, sequentially
• All files in a directory tend to be used together
• All names in a directory tend to be used together

Summary

35

Files
• Operations, access methods

 Directories
• Operations, using directories to do path searches
•
Sharing

Protection
• ACLs vs. capabilities

Next Chapter

36

Read Chapter 40, 41

	Slide 1: Lecture 16: File System Fall 2025
	Slide 2: Administrivia
	Slide 3: Recap: I/O & Disks
	Slide 4: Recap: I/O & Disks
	Slide 5: File System Not Fun
	Slide 6: File System Abstraction
	Slide 7: Files
	Slide 8: File Types
	Slide 9: Basic File Operations
	Slide 10: File Access Methods
	Slide 11: Directories
	Slide 12: A Short History of Directories
	Slide 13: Hierarchical Directory
	Slide 14: Directory Internals
	Slide 15: Path Name Translation
	Slide 16: Naming Magic
	Slide 17: Basic Directory Operations
	Slide 18: Default Context: Working Directory
	Slide 19: Hard Links
	Slide 20: Soft Links
	Slide 21: File Sharing
	Slide 22: Protection
	Slide 23: Representing Protection
	Slide 24: ACLs and Capabilities
	Slide 25: Unix File Protection
	Slide 26: Overview
	Slide 27: Why Disks Are Different
	Slide 28: Disk vs. Memory
	Slide 29: Disk Review
	Slide 30: Some Useful Trends (1)
	Slide 31: Some Useful Trends (2)
	Slide 32: Goal
	Slide 33: File Systems vs. Virtual Memory
	Slide 34: Some Working Intuitions
	Slide 35: Summary
	Slide 36: Next Chapter

