CE 440 Introduction to Operating System

Lecture 16: File System Implementation
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

Lab 3 overview session this Friday
e 2:30-4:00PM, PHO305

Problem: How to Track File’s Data

Disk management:

Need to keep track of where file contents are on disk

Must be able to use this to map byte offset to disk block
Structure tracking a file’s sectors is called an index node or inode
inodes must be stored on disk, too

Things to keep in mind while designing file structure:

* Mostfiles are small

* Much of the disk is allocated to large files

* Many of the I/O operations are made to large files

* Want good sequential and good random access (what do these require?)

Straw Man: Contiguous Allocation

“Extent-based”: allocate files like segmented memory
* When creating a file, make the user pre-specify its length and allocate all
space at once |
* |Inode contents: location and size

‘ ‘ ‘ ‘ ‘ What happens if file c needs
2 sectors?

. — —
file a (base=1, len=3) file b (base=5, len=2)

Example: IBM OS/360

Pros?
* Simple, fast access, both sequential and random

Cons? (Think of corresponding VM scheme)
* External fragmentation

Straw Man #2: Linked Files

Basically a linked list on disk. Hownd ‘ast block In a7
« Keep alinked list of all free blocks | ‘ ‘ [‘ ‘ \ ‘ ﬁ:l
* Inode contents: a pointer to file’s first block — - —

* |neach block, keep a pointer to the next one file a (base=1) file b (base=5)

Examples (sort-of): Alto, TOPS-10, DOS FAT

Pros?
« Easy dynamic growth & sequential access, no fragmentation

Cons?
 Linked lists on disk a bad idea because of access times

« Random very slow (e.g., traverse whole file to find last block)
* Pointers take up room in block, skewing alignment

Example: DOS FS (simplified)

Linked files with key optimization: puts links in fixed-size “file allocation
table” (FAT) rather than in each data block

FAT (16-bit entries)

File A:
0| free R R
1 EOF 6 4 3
i 2 1
Directory (5) File B:
A 6 3 EOF
B: 2 4 3 2 1
5| EOF
6 4

Still do pointer chasing, but can cache entire FAT so can be cheap compared to disk access

FAT Discussion
Entry size = 16 bits (initial FAT16 in MS-DOS 3.0)

e What’s the maximum size of the FAT?

65,536 entries

 Given a 512 byte block, what’s the maximum size of FS?
* One solution: go to bigger blocks. Pros? Cons?

Space overhead of FAT is trivial:
* 2bytes/512byte block=~ 0.4% (Compare to Unix)

Reliability: how to protect against errors?
 Create duplicate copies of FAT on disk
e State duplication a very common theme in reliability

Bootstrapping: where is root directory?
* Fixed location on disk | FAT |FAT(opt) |Root dirl |

Another Approach: Indexed Files

Each file has an array holding all of its block pointers
* Just like a page table, so will have similar issues
 Maxfile size fixed by array’s size (static or dynamic?)
* Allocate array to hold file’s block pointers on file creation
* Allocate actual blocks on demand using free list

Pros?
* Both sequential and random access easy

Cons?
* Mapping table requires large chunk of contiguous
space
e ...Same problem we were trying to solve initially

file a file b

type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

Inodes

indirect

More About inodes

inodes are stored in a fixed-size array

Size of array fixed when disk is initialized; can’t be changed
Lives in known location, originally at one side of disk:

| Inod% ifile blocks ... ,

The index of an inode in the inode array called an i-number
Internally, the OS refers to files by i-number

When file is opened, inode brought in memory

Written back when modified and file closed or time elapses

10

More About inodes

ﬂ ﬂﬂhﬂ\ﬂﬂﬂﬂﬂﬂﬂﬂ

Indexed Files

Issues same as in page tables
* Large possible file size = lots of unused entries
* Large actual size? table needs large contiguous disk chunk

2”32 file size /

[TTTTITTTT1«—2"20 entries!

4K blocks

Solve identically: small regions with index array, this array with another
array, ...

12

Multi-level Indexed Files: Unix inodes

inode =15 block pointers + “stuff”
* first 12 are direct blocks: solve problem of first blocks access slow
* then single, double, and triple indirect block

_—
ann ’/'.
“stuff” :/'-
- .
ptri _ /'.
ptr2 | - -
ptr13 -—H
ptrid —
ptri5 | ——™ - =

A

Unix inodes and Path Search

Unixinodes are not directories

* Inodes describe where on the disk the blocks for a file are placed

 Directories are files, so inodes also describe where the blocks for directories are
placed on the disk

Directory entries map file names to inodes, e.g., to open “/a.txt”
* To open “/one”, read inode #2 (“/”) from disk into memory
 Read the content of “/” from disk into memory, look for entry for “a.txt”
* This entry gives the inode # for “a.txt”
* Read the inode for “a.txt” into memory
* Theinode says where first data block is on disk

. . . How many disk
* Read that block into memory to access the data in the file

accesses are
required?

14

Unix Example: /a/b/c.c

o 2
é S
ENERERR ENTEE
inode table — /‘
(3 (5 4 (6

What inode holds file for a? b? c.c?

How many disk accesses to read the first byte in c.c?

15

File Buffer Cache

Disk operations are slow...
Applications exhibit locality for reading and writing files

Idea: Cache file blocks in memory to capture locality
 Calledthe file buffer cache
« Cacheis system wide, used and shared by all processes
* Reading from the cache makes a disk perform like memory
* Even a small cache can be very effective

Issues
* The file buffer cache competes with VM (tradeoff here)
* Like VM, it has limited size
* Need replacement algorithms again (LRU usually used)

16

Caching Writes

On a write, some applications assume that data makes it through the

buffer cache and onto the disk
* As aresult, writes are often slow even with caching

OSes typically do write back caching
* Maintain a queue of uncommitted blocks
* Periodically flush the queue to disk (30 second threshold)
* |If blocks changed many times in 30 secs, only need one I/O
* |f blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

Unreliable, but practical
* On acrash, all writes within last 30 secs are lost
* Modern OSes do this by default; too slow otherwise
* System calls (Unix: fsync) enable apps to force data to disk

17

Read Ahead

Many file systems implement “read ahead”
* FS predicts that the process will request next block
* FS goes ahead and requests it from the disk
* This can happen while the process is computing on previous block
o Overlap I/0 with execution
When the process requests block, it will be in cache
« Compliments the disk cache, which also is doing read ahead

For sequentially accessed files can be a big win
* Unless blocks for the file are scattered across the disk
* File systems try to prevent that, though (during allocation)

18

Recap: I/O & Disks

track f <«— spindle

sector s

I

! |

I I

. I I
cylinder ¢ —>! |
I |

[

|

platter

rotation

read-write
head

iy,

— arm assembly

Rotates this way

/"'

Seek, rotate, transfer

19

Why Disks Are Different

Disk = First state we’ve seen that doesn’t go away

 So:Where all important state ultimately resides y %d.) \
memor IS

Slow (milliseconds access vs. nanoseconds for memory)

improvement Processor speed: 2 x/18mo

Disk access time: 7% /yr

. > year
Huge (100-1,000x bigger than memory)

* Howto organize large collection of ad hoc information?
* File System: Hierarchical directories, Metadata, Search

20

Disk vs. Memory

Disk MLC NAND DRAM
Flash

Smallest write sector sector byte
Atomic write sector sector byte/word
Random read 8 ms 3-10 us 50 ns
Random write 8 ms 9-11 us* 50 ns
Sequential read 100 MB/s 550-2500 MB/s >1 GB/s
Sequential write 100 MB/s 520-1500 MB/s* > 1 GB/s
Cost $0.03/GB $0.35/GB $6/GiB
Persistence Non-volatile Non-volatile Volatile

*. Flash write performance degrades over time

21

Disk Review

Disk reads/writes in terms of sectors, not bytes
* Read/write single sector or adjacent groups.

How to write a single byte? “Read-modify-write”

* Read in sector containing the byte ‘
* Modify that byte

* Write entire sector back to disk
 Key: if cached, don’t need to read in ‘

= |
B |

Sector = unit of atomicity.

* Sectorwrite done completely, even if crash in middle (disk saves up
enough momentum to complete)

Larger atomic units have to be synthesized by OS

Some Useful Trends (1)

Disk bandwidth and cost/bit improving exponentially
* Similarto CPU speed, memory size, etc.

Seek time and rotational delay improving very slowly
* Why? require moving physical object (disk arm)

Disk access is a huge system bottleneck & getting worse

 Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as
small chunk.
* Trade bandwidth for latency if you can get lots of related stuff.

23

Some Useful Trends (2)

Desktop memory size increasing faster than typical workloads
* More and more of workload fits in file cache
* Disk traffic changes: mostly writes and new data

Memory and CPU resources increasing
* Use memory and CPU to make better decisions
e Complex prefetching to support more IO patterns
 Delay data placement decisions reduce random IO

24

Goal

Want: operations to have as few disk accesses as possible & have
minimal space overhead (group related things)

What’s hard about grouping blocks?

Like page tables, file system metadata constructs mappings
* Page table: map virtual page # to physical page #
* File metadata: map byte offset to disk block address
* Directory: map name to disk address or file #

25

File Systems vs. Virtual Memory

In both settings, want location transparency
* Application shouldn’t care about particular.disk blocks or physical memory
locations

In some ways, FS has easier job than VM:

e CPUtime to do FS mappings not a big deal (why?) -TLB
 Page tables deal with sparse address spaces and random access, files often
denser (0. .. filesize— 1), ~sequentially accessed

In some ways, FS’s problem is harder:
 Each layer of translation = potential disk access
* Space a huge premium! (But disk is huge?!?!)
o Cache space never enough; amount of data you can get in one fetch never enough
* Range very extreme: Many files < 10 KB, some files GB

26

Some Working Intuitions

FS performance dominated by # of disk accesses
 Sayeach access costs ~10 milliseconds
* Touch the disk 100 times =1 second
* Cando abillion ALU ops in same time!

Access cost dominated by movement, not transfer:
e 1sector:5ms+4ms+5us (=512 B/(100 MB/s)) = 9ms
* 50 sectors: 5ms +4ms + .25ms =9.25ms
* Canget 50x the data for only ~3% more overhead!

Observations that might be helpful:
* All blocksin file tend to be used together, sequentially

* Allfilesin a directory tend to be used together
* All namesin adirectory tend to be used together

27

File Systems Examples

BSD Fast File System (FFS)

* What were the problems with the original Unix FS?
* How did FFS solve these problems?

Log-Structured File system (LFS) - next lecture
* What was the motivation of LFS?
e How did LFS work?

28

Original Unix FS

From Bell Labs by Ken Thompson

Simple and elegant:

super

Unix disk layout
Components

. Data Blocks (512 bytes)
e Data blocks

* Inodes (directories represented as files)

* Free list
 Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head

of free list)

Problem: slow
* Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

Why So Slow?

Problem 1: blocks too small (512 bytes)
* File index too large
* Require more indirect blocks
* Transferrate low (get one block at time)

Problem 2: unorganized freelist
 Consecutive file blocks not close together
o Pay seek cost for even sequential acces
* Aging: becomes fragmented over time

Problem 3: poor locality
* inodes far from data blocks
* inodes for directory not close together
* poor enumeration performance: e.g., “ls

b 14
)

grep foo *.c”

30

FFS: Fast File System

Desighed by a Berkeley research group for the BSD UNIX
* Aclassic file systems paper to read: [McKusic]

Approach:
* Measure an state of the art systems
* |dentify and understand the fundamental problems
o The original FS treats disks like random-access memory!
 Getanidea and build a better systems

Idea: design FS structures and allocation polices to be “disk aware”

Next: how FFS fixes the performance problems (to a degree)

31

Problem 1: Blocks Too Small

~= Space Wasted =—a File Bandwidth

100

)]
o

Measurement:

Percent (%)

B
o

F_ L 1 1
5928 1024B 2048B 40968 1MB
Block Size

Bigger block increases bandwidth, but how to deal with wastage (“internal
fragmentation”)?
* Use idea from malloc: split unused portion

32

Solution: Fragments

BSD FFS:
* Has large block size (4096B or 8192B)
* Allow large blocks to be chopped into small ones called “fragments”
* Ensure fragments only used for little files or ends of files

N
file A file B

o Fragment size specified at the time that the file system is created

o Limit number of fragments per blockto 2, 4, or 8

Pros
* High transfer speed for larger files
* Low wasted space for small files or ends of files

33

Fragment Example

Block size: 4096 B
Fragment size: 1024 B

ﬁle size 5 KB file, size 2K B

\

DOEN N

34

Fragment Example

write (£d1, “A”); // append A to first file ' Block size: 4096 B

Fragment size: 1024 B
file, size 6KB file, size 2KB

/

y G

bl I

35

Fragment Example

write (£dl, ™“A”); // append A to first file ' Block size: 4096 B

file, size 7KB file, size 2KB

write (£d1, “a7); Fragment size: 1024 B

DOEONONNEN

Not allowed to use fragments across multiple blocks!

What to do instead?

36

Fragment Example

write (£dl, ™“A”); // append A to first file ' Block size: 4096 B

write (£d1, “a7); Fragment size: 1024 B

file, size 7KB file, size 2KB

copy old fragments to new block
new data use remaining fragments

37

Fragment Example

write (£d1,) ; // append A to first file | Block size: 4096 B

\\A//
. Fragment size: 1024 B
write (fdl, “A”7); 9
\\A// ;

1t (fdl ’ 1 .
wELEE) file, size 8KB file, size 2KB

38

Problem 2: Unorganized Freelist

Leads to random allocation of sequential file blocks overtime

Measurement:
 NewFS: 17.5% of disk bandwidth
e Few weeks old: 3% of disk bandwidth

Y\ ¥ ¢
VARV ERVERV.

O

Initial performance good Get worse over time

39

Fixing the Unorganized Freelist

Periodical compact/defragment disk
* Cons: locks up disk bandwidth during operation

Keep adjacent free blocks together on freelist
 Cons: costly to maintain

FFS: bitmap of free blocks
* Each bitindicates whether block is free
o E.g.,1010101111111000001111111000101100
 Easierto find contiguous blocks
 Small, so usually keep entire thing in memory
* Time tofind free blocks increases if fewer free blocks

* What about fragments in a block? Bits in map X XX00 O0XX 0000
Fragment numbers 0-3 4-7 8-11 12-15
Block numbers 0 1 2 3

40

Using a Bitmap

Usually keep entire bitmap in memory:
4G disk/ 4K byte blocks. How bigis map?

Allocate block close to block x?
* Checkfor blocks near bmap[x/32]
* |f disk almost empty, will likely find one near

* Asdisk becomes full, search becomes more expensive and less effective

Trade space for time (search time, file access time)

.m Data Blocks (512 bytes)
maps

super

41

Problem 3: Poor Locality

fast

inodes Data Blocks (512 bytes)

whole disk

How to keep inode close to data block?

42

Problem 3: Poor Locality

fast

inodes Data Blocks (512 bytes)

whole disk

How to keep inode close to data block?

43

Problem 3: Poor Locality

Example bad layout:

inode

|
slijaj i Jijiji] puojojojojojojojo
0 7 8 15

3 2 1
ojojejojojojojopyofofojoiolojofo
16 23 24 31

How to keep inode close to data block?

44

Problem 3: Poor Locality

slower-

. Data Blocks (512 bytes)
maps

0
|

super

whole disk

How to keep inode close to data block?

45

Problem 3: Poor Locality

slowest

—_

. Data Blocks (512 bytes)
maps

0
|

super

whole disk

How to keep inode close to data block?

46

Recap: Cylinders, Trackers, & Sectors

track t «— spindle
E ..t
| TS| <— arm assembly
sector s ! |
I
' 4
|
| |
I I
I I]
cylinder ¢ —» | read-write
| | head
I I
I
Q I
platter
D

rotation

47

FFS Solution: Cylinder Group

Group sets of consecutive cylinders into “cylinder groups”

Cylinder group 1 __

Cylinder group 2 \

Key: can access any block in a cylinder without performing a seek. Next fastest place
is adjacent cylinder.

* Tries to put everything related in same cylinder group

* Tries to put everything not related in different group

48

Clustering in FFS

Tries to put sequential blocks in adjacent sectors
* (Access one block, probably access next)

s

file a file b
Tries to keep inode in same cylinder as file data:
* (If you look atinode, most likely will look at data to0)

i 1 1

Tries to keep all inodes in a dirin same cylinder group
* Access one name, frequently access many, e.g., “ls -”

49

What Does Disk Layout Look Like Now?

fast fast fast
group 1 group 2 group 3

How to keep inode close to data block?
* Answer: Use groups across disks
 Strategy: allocate inodes and data blocks in same group
* Each cylinder group basically a mini-Unix file system

Is it useful to have multiple super blocks?
* Yes, if some (but not all) fail

50

FFS Results

Performance improvements:
* Able to get 20-40% of disk bandwidth for large files
* 10-20x original Unix file system!
* Stable over FS lifetime
* Better small file performance (why?)

Other enhancements
* Longfile names
* Parameterization
* Free space reserve (10%) that only admin can allocate blocks from

51

Summary

File System Layouts
* Unixinodes

File Buffer Cache
* Strategies for handling writes

Fast File System

52

Read Chapter 43

Next Time...

53

	Slide 1: Lecture 16: File System Implementation Fall 2025
	Slide 2: Administrivia
	Slide 3: Problem: How to Track File’s Data
	Slide 4: Straw Man: Contiguous Allocation
	Slide 5: Straw Man #2: Linked Files
	Slide 6: Example: DOS FS (simplified)
	Slide 7: FAT Discussion
	Slide 8: Another Approach: Indexed Files
	Slide 9: inodes
	Slide 10: More About inodes
	Slide 11: More About inodes
	Slide 12: Indexed Files
	Slide 13: Multi-level Indexed Files: Unix inodes
	Slide 14: Unix inodes and Path Search
	Slide 15: Unix Example: /a/b/c.c
	Slide 16: File Buffer Cache
	Slide 17: Caching Writes
	Slide 18: Read Ahead
	Slide 19: Recap: I/O & Disks
	Slide 20: Why Disks Are Different
	Slide 21: Disk vs. Memory
	Slide 22: Disk Review
	Slide 23: Some Useful Trends (1)
	Slide 24: Some Useful Trends (2)
	Slide 25: Goal
	Slide 26: File Systems vs. Virtual Memory
	Slide 27: Some Working Intuitions
	Slide 28: File Systems Examples
	Slide 29: Original Unix FS
	Slide 30: Why So Slow?
	Slide 31: FFS: Fast File System
	Slide 32: Problem 1: Blocks Too Small
	Slide 33: Solution: Fragments
	Slide 34: Fragment Example
	Slide 35: Fragment Example
	Slide 36: Fragment Example
	Slide 37: Fragment Example
	Slide 38: Fragment Example
	Slide 39: Problem 2: Unorganized Freelist
	Slide 40: Fixing the Unorganized Freelist
	Slide 41: Using a Bitmap
	Slide 42: Problem 3: Poor Locality
	Slide 43: Problem 3: Poor Locality
	Slide 44: Problem 3: Poor Locality
	Slide 45: Problem 3: Poor Locality
	Slide 46: Problem 3: Poor Locality
	Slide 47: Recap: Cylinders, Trackers, & Sectors
	Slide 48: FFS Solution: Cylinder Group
	Slide 49: Clustering in FFS
	Slide 50: What Does Disk Layout Look Like Now?
	Slide 51: FFS Results
	Slide 52: Summary
	Slide 53: Next Time…

