CE 440 Introduction to Operating System

Lecture 16: File System Implementation Fall 2025

Prof. Yigong Hu

Administrivia

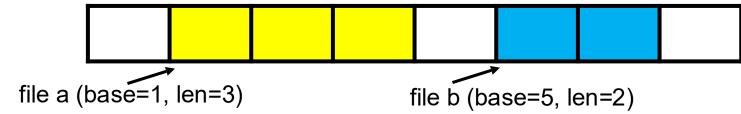
Lab 3 overview session this Friday

• 2:30 - 4:00 PM, PHO305

Problem: How to Track File's Data

Disk management:

- Need to keep track of where file contents are on disk
- Must be able to use this to map byte offset to disk block
- Structure tracking a file's sectors is called an index node or inode
- inodes must be stored on disk, too


Things to keep in mind while designing file structure:

- Most files are small
- Much of the disk is allocated to large files
- Many of the I/O operations are made to large files
- Want good sequential and good random access (what do these require?)

Straw Man: Contiguous Allocation

"Extent-based": allocate files like segmented memory

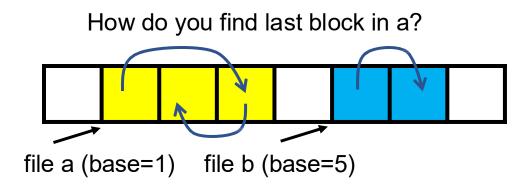
- When creating a file, make the user pre-specify its length and allocate all space at once
- Inode contents: location and size

What happens if file c needs 2 sectors?

Example: IBM OS/360

Pros?

Simple, fast access, both sequential and random


Cons? (Think of corresponding VM scheme)

External fragmentation

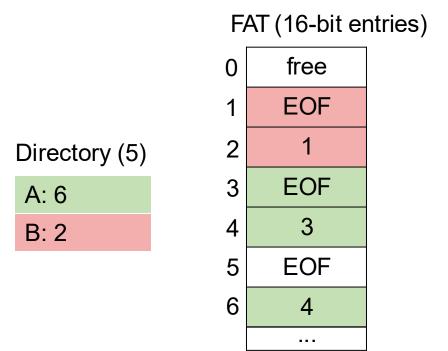
Straw Man #2: Linked Files

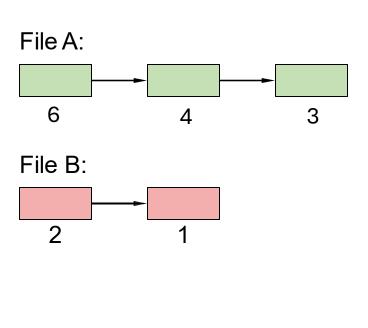
Basically a linked list on disk.

- Keep a linked list of all free blocks
- Inode contents: a pointer to file's first block
- In each block, keep a pointer to the next one

Examples (sort-of): Alto, TOPS-10, DOS FAT

Pros?


Easy dynamic growth & sequential access, no fragmentation


Cons?

- Linked lists on disk a bad idea because of access times
- Random very slow (e.g., traverse whole file to find last block)
- Pointers take up room in block, skewing alignment

Example: DOS FS (simplified)

Linked files with key optimization: puts links in fixed-size "file allocation table" (FAT) rather than in each data block

Still do pointer chasing, but can cache entire FAT so can be cheap compared to disk access

FAT Discussion

Entry size = 16 bits (initial FAT16 in MS-DOS 3.0)

What's the maximum size of the FAT?

65,536 entries

- Given a 512 byte block, what's the maximum size of FS?
- One solution: go to bigger blocks. Pros? Cons?

Space overhead of FAT is trivial:

• 2 bytes / 512 byte block = \sim 0.4% (Compare to Unix)

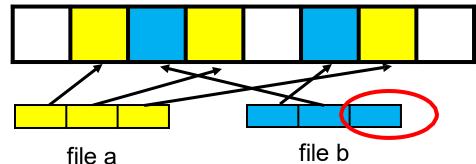
Reliability: how to protect against errors?

- Create duplicate copies of FAT on disk
- State duplication a very common theme in reliability

Bootstrapping: where is root directory?

Fixed location on disk

FAT FAT (opt) Root dir ...

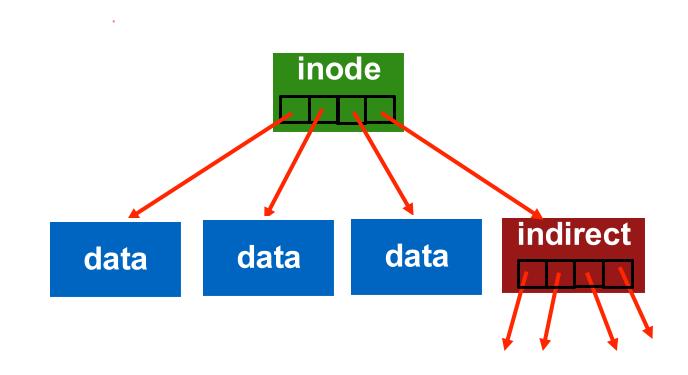

Another Approach: Indexed Files

Each file has an array holding all of its block pointers

- Just like a page table, so will have similar issues
- Max file size fixed by array's size (static or dynamic?)
- Allocate array to hold file's block pointers on file creation
- Allocate actual blocks on demand using free list

Pros?

Both sequential and random access easy



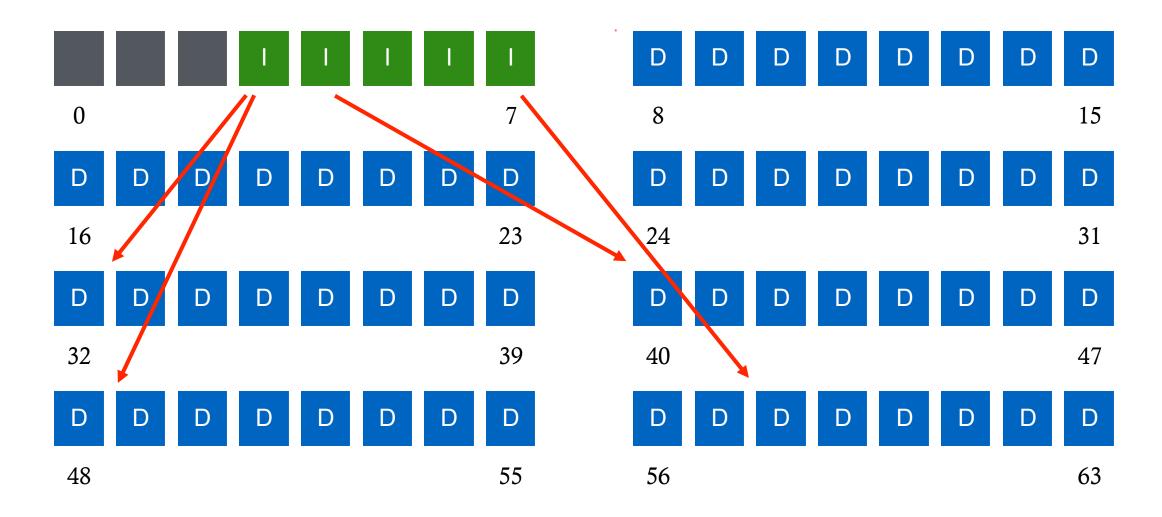
Cons?

- Mapping table requires large chunk of contiguous space
- ...Same problem we were trying to solve initially

inodes

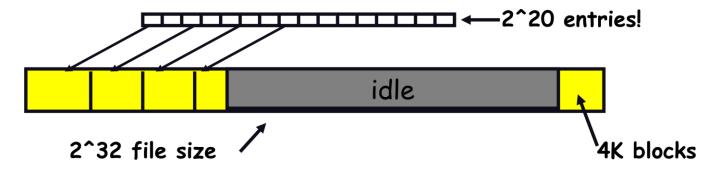
type (file or dir?)
uid (owner)
rwx (permissions)
size (in bytes)
blocks
time (access)
ctime (create)
links_count (# paths)
addrs[N] (N data blocks)

More About inodes


inodes are stored in a fixed-size array

- Size of array fixed when disk is initialized; can't be changed
- Lives in known location, originally at one side of disk:

- The index of an inode in the inode array called an i-number
- Internally, the OS refers to files by i-number
- When file is opened, inode brought in memory
- Written back when modified and file closed or time elapses


More About inodes

Indexed Files

Issues same as in page tables

- Large possible file size = lots of unused entries
- Large actual size? table needs large contiguous disk chunk

Solve identically: small regions with index array, this array with another array, ...

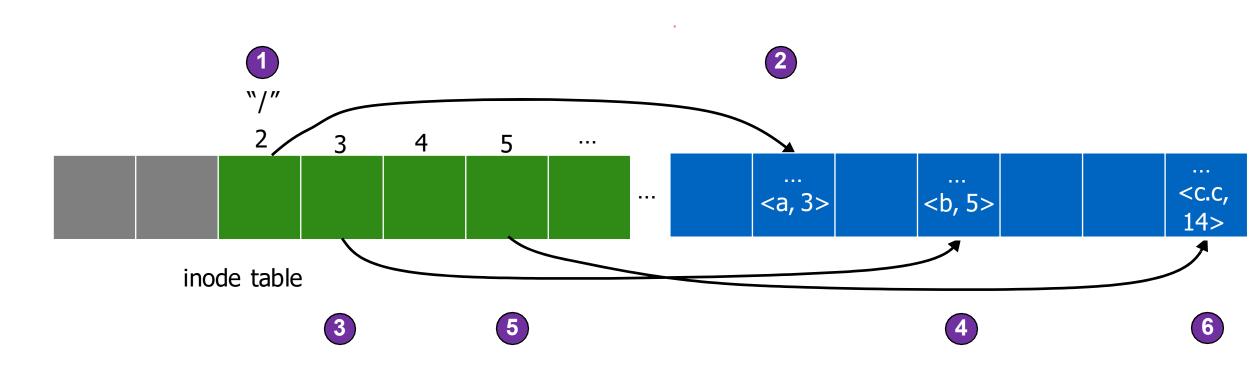
Multi-level Indexed Files: Unix inodes

inode = 15 block pointers + "stuff"

- first 12 are direct blocks: solve problem of first blocks access slow
- then single, double, and triple indirect block

Unix inodes and Path Search

Unix inodes are not directories


- Inodes describe where on the disk the blocks for a file are placed
- Directories are files, so inodes also describe where the blocks for directories are placed on the disk

Directory entries map file names to inodes, e.g., to open "/a.txt"

- To open "/one", read inode #2 ("/") from disk into memory
- Read the content of "/" from disk into memory, look for entry for "a.txt"
- This entry gives the inode # for "a.txt"
- Read the inode for "a.txt" into memory
- The inode says where first data block is on disk
- · Read that block into memory to access the data in the file

How many disk accesses are required?

Unix Example: /a/b/c.c

What inode holds file for a? b? c.c?

How many disk accesses to read the first byte in c.c?

File Buffer Cache

Disk operations are slow...

Applications exhibit locality for reading and writing files

Idea: Cache file blocks in memory to capture locality

- Called the file buffer cache
- Cache is system wide, used and shared by all processes
- Reading from the cache makes a disk perform like memory
- Even a small cache can be very effective

Issues

- The file buffer cache competes with VM (tradeoff here)
- Like VM, it has limited size
- Need replacement algorithms again (LRU usually used)

Caching Writes

On a write, some applications assume that data makes it through the buffer cache and onto the disk

As a result, writes are often slow even with caching

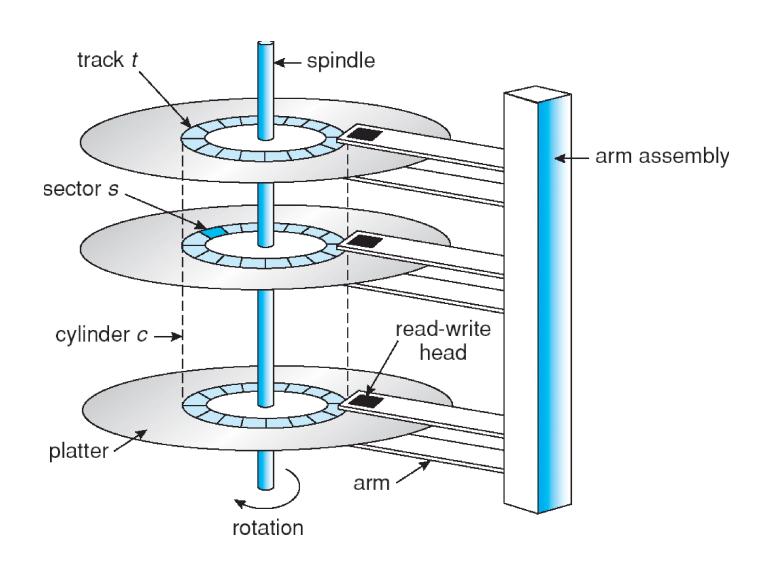
OSes typically do write back caching

- Maintain a queue of uncommitted blocks
- Periodically flush the queue to disk (30 second threshold)
- If blocks changed many times in 30 secs, only need one I/O
- If blocks deleted before 30 secs (e.g., /tmp), no I/Os needed

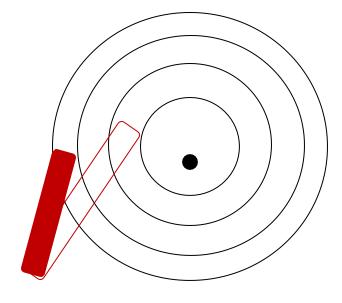
Unreliable, but practical

- On a crash, all writes within last 30 secs are lost
- Modern OSes do this by default; too slow otherwise
- System calls (Unix: fsync) enable apps to force data to disk

Read Ahead


Many file systems implement "read ahead"

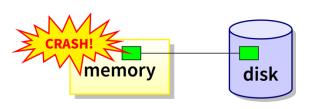
- FS predicts that the process will request next block
- FS goes ahead and requests it from the disk
- This can happen while the process is computing on previous block
 - Overlap I/O with execution
- When the process requests block, it will be in cache
- Compliments the disk cache, which also is doing read ahead


For sequentially accessed files can be a big win

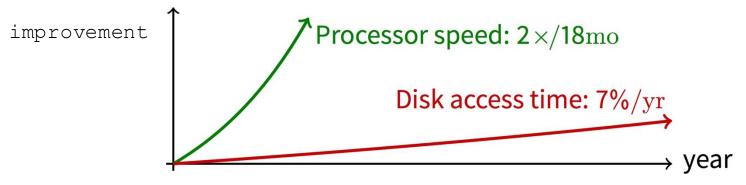
- Unless blocks for the file are scattered across the disk
- File systems try to prevent that, though (during allocation)

Recap: I/O & Disks

Rotates this way



Seek, rotate, transfer


Why Disks Are Different

Disk = First state we've seen that doesn't go away

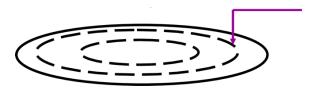
So: Where all important state ultimately resides

Slow (milliseconds access vs. nanoseconds for memory)

Huge (100-1,000x bigger than memory)

- How to organize large collection of ad hoc information?
- File System: Hierarchical directories, Metadata, Search

Disk vs. Memory


	Disk	MLC NAND Flash	DRAM
Smallest write	sector	sector	byte
Atomic write	sector	sector	byte/word
Random read	8 ms	3-10 µs	50 ns
Random write	8 ms	9-11 µs*	50 ns
Sequential read	100 MB/s	550–2500 MB/s	> 1 GB/s
Sequential write	100 MB/s	520-1500 MB/s*	> 1 GB/s
Cost	\$0.03/GB	\$0.35/GB	\$6/GiB
Persistence	Non-volatile	Non-volatile	Volatile

^{*:} Flash write performance degrades over time

Disk Review

Disk reads/writes in terms of sectors, not bytes

Read/write single sector or adjacent groups.

How to write a single byte? "Read-modify-write"

- Read in sector containing the byte
- Modify that byte
- Write entire sector back to disk
- Key: if cached, don't need to read in

Sector = unit of atomicity.

 Sector write done completely, even if crash in middle (disk saves up enough momentum to complete)

Larger atomic units have to be synthesized by OS

Some Useful Trends (1)

Disk bandwidth and cost/bit improving exponentially

Similar to CPU speed, memory size, etc.

Seek time and rotational delay improving very slowly

Why? require moving physical object (disk arm)

Disk access is a huge system bottleneck & getting worse

- Bandwidth increase lets system (pre-)fetch large chunks for about the same cost as small chunk.
- Trade bandwidth for latency if you can get lots of related stuff.

Some Useful Trends (2)

Desktop memory size increasing faster than typical workloads

- More and more of workload fits in file cache
- Disk traffic changes: mostly writes and new data

Memory and CPU resources increasing

- Use memory and CPU to make better decisions
- Complex prefetching to support more IO patterns
- Delay data placement decisions reduce random IO

Goal

Want: operations to have as few disk accesses as possible & have minimal space overhead (group related things)

What's hard about grouping blocks?

Like page tables, file system metadata constructs mappings

- Page table: map virtual page # to physical page #
- File metadata: map byte offset to disk block address
- Directory: map name to disk address or file #

File Systems vs. Virtual Memory

In both settings, want location transparency

Application shouldn't care about particular disk blocks or physical memory locations

In some ways, FS has easier job than VM:

- CPU time to do FS mappings not a big deal (why?) →TLB
- Page tables deal with sparse address spaces and random access, files often denser (0 . . . filesize 1), ~sequentially accessed

In some ways, FS's problem is harder:

- Each layer of translation = potential disk access
- Space a huge premium! (But disk is huge?!?!)
 - O Cache space never enough; amount of data you can get in one fetch never enough
- Range very extreme: Many files < 10 KB, some files GB

Some Working Intuitions

FS performance dominated by # of disk accesses

- Say each access costs ~10 milliseconds
- Touch the disk 100 times = 1 second
- Can do a billion ALU ops in same time!

Access cost dominated by movement, not transfer:

- 1 sector: $5ms + 4ms + 5\mu s \ (\approx 512 B/(100 MB/s)) \approx 9ms$
- 50 sectors: 5ms + 4ms + .25ms = 9.25ms
- Can get 50x the data for only $\sim 3\%$ more overhead!

Observations that might be helpful:

- All blocks in file tend to be used together, sequentially
- All files in a directory tend to be used together
- All names in a directory tend to be used together

File Systems Examples

BSD Fast File System (FFS)

- What were the problems with the original Unix FS?
- How did FFS solve these problems?

Log-Structured File system (LFS) – next lecture

- What was the motivation of LFS?
- How did LFS work?

Original Unix FS

From Bell Labs by Ken Thompson

Simple and elegant:

Unix disk layout

Components

- Data blocks
- Inodes (directories represented as files)
- Free list
- Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head of free list)

Problem: slow

Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

Why So Slow?

Problem 1: blocks too small (512 bytes)

- File index too large
- Require more indirect blocks
- Transfer rate low (get one block at time)

Problem 2: unorganized freelist

- Consecutive file blocks not close together
 - Pay seek cost for even sequential acces
- Aging: becomes fragmented over time

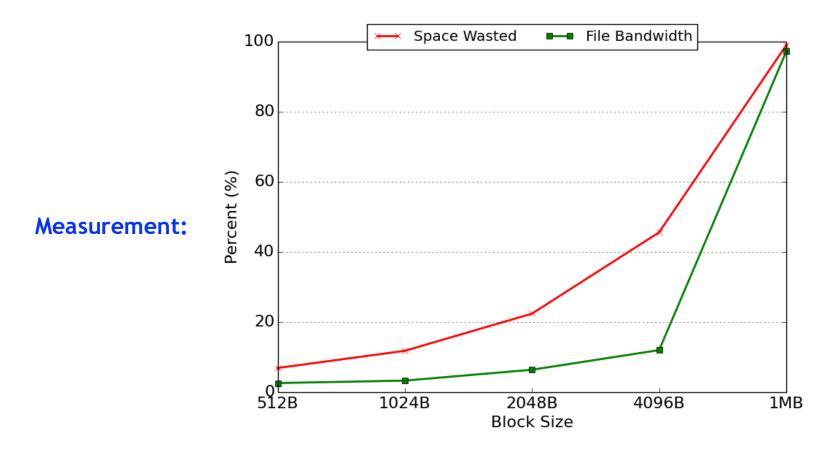
Problem 3: poor locality

- inodes far from data blocks
- inodes for directory not close together
 - poor enumeration performance: e.g., "ls", "grep foo *.c"

FFS: Fast File System

Designed by a Berkeley research group for the BSD UNIX

A classic file systems paper to read: [McKusic]

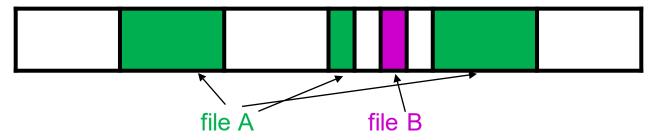

Approach:

- Measure an state of the art systems
- Identify and understand the fundamental problems
 - The original FS treats disks like random-access memory!
- Get an idea and build a better systems

Idea: design FS structures and allocation polices to be "disk aware"

Next: how FFS fixes the performance problems (to a degree)

Problem 1: Blocks Too Small

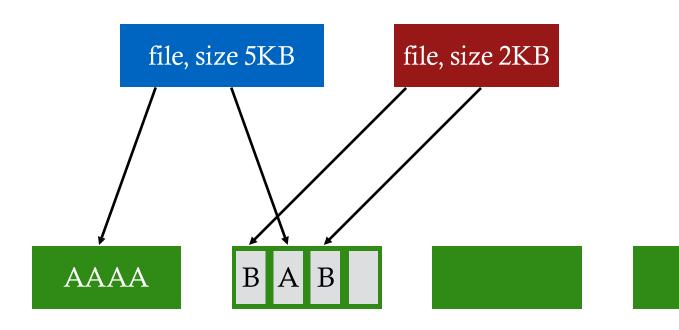

Bigger block increases bandwidth, but how to deal with wastage ("internal fragmentation")?

Use idea from malloc: split unused portion

Solution: Fragments

BSD FFS:

- Has large block size (4096B or 8192B)
- Allow large blocks to be chopped into small ones called "fragments"
- Ensure fragments only used for little files or ends of files

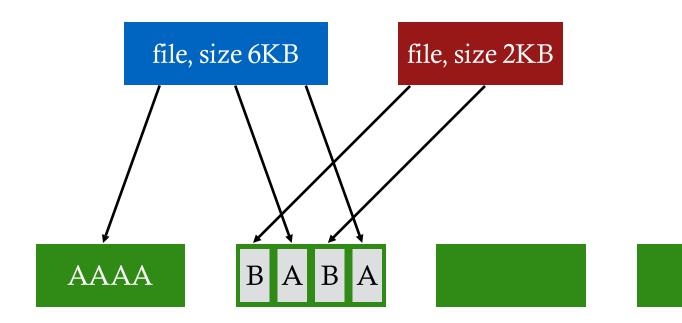

- Fragment size specified at the time that the file system is created
- Limit number of fragments per block to 2, 4, or 8

Pros

- High transfer speed for larger files
- Low wasted space for small files or ends of files

Fragment Example

Block size: 4096 B Fragment size: 1024 B



Fragment Example

write(fd1, "A"); // append A to first file

Block size: 4096 B

Fragment size: 1024 B

Fragment Example

```
write(fd1, "A"); // append A to first file
write(fd1, "A");

file, size 7KB

file, size 2KB

AAAA

B A B A A
```

Block size: 4096 B

Fragment size: 1024 B

Not allowed to use fragments across multiple blocks!

What to do instead?

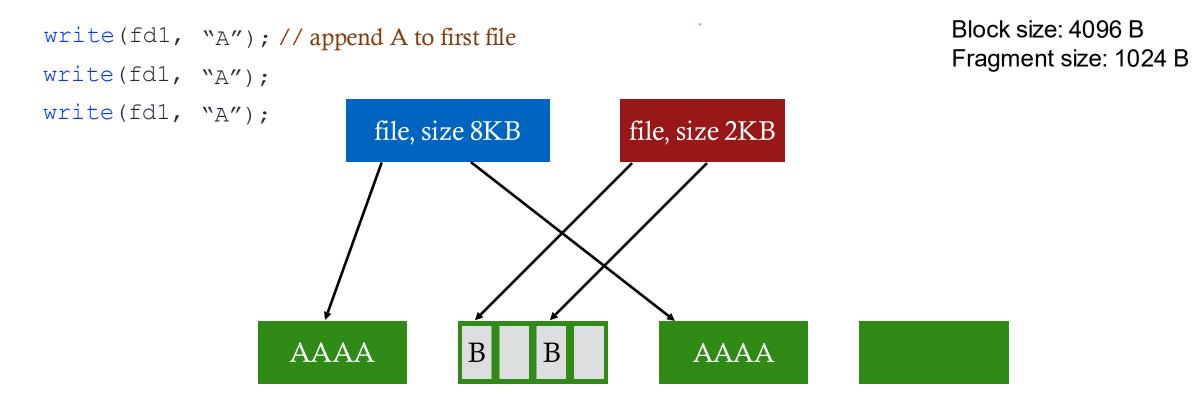
Fragment Example

```
write(fd1, "A"); // append A to first file
write(fd1, "A");

file, size 7KB

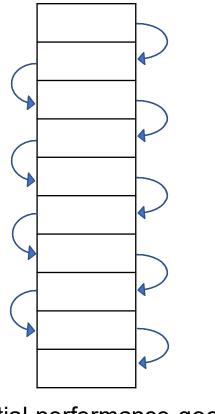
file, size 2KB
```

В

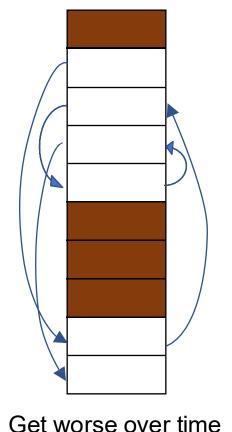

AAAA

Block size: 4096 B

Fragment size: 1024 B


copy old fragments to new block new data use remaining fragments

Fragment Example



Problem 2: Unorganized Freelist

Leads to random allocation of sequential file blocks overtime

Initial performance good

Measurement:

- New FS: 17.5% of disk bandwidth
- Few weeks old: 3% of disk bandwidth

Fixing the Unorganized Freelist

Periodical compact/defragment disk

Cons: locks up disk bandwidth during operation

Keep adjacent free blocks together on freelist

Cons: costly to maintain

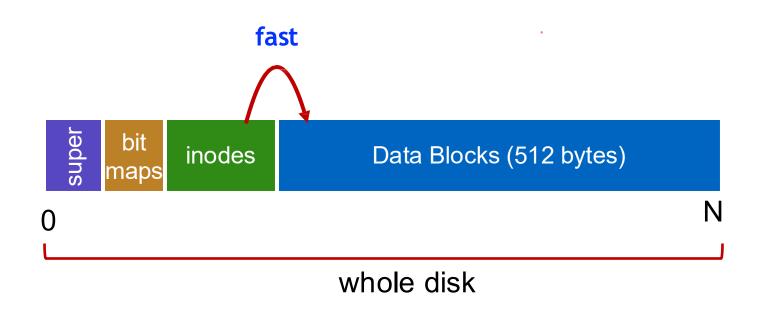
FFS: bitmap of free blocks

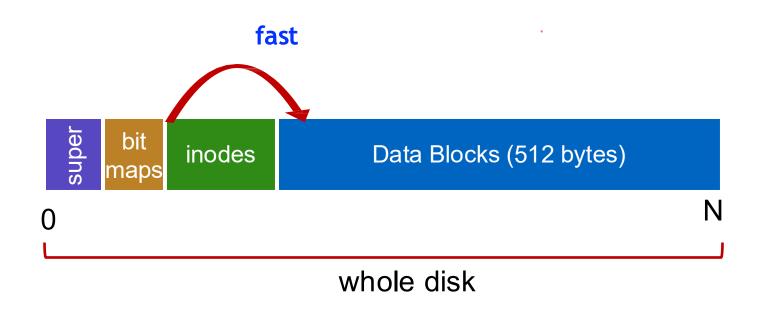
- Each bit indicates whether block is free
 - o E.g., 101010111111110000011111111000101100
- Easier to find contiguous blocks
- Small, so usually keep entire thing in memory
- Time to find free blocks increases if fewer free blocks
- What about fragments in a block?

Bits in map	XXXX	XXOO	OOXX	0000
Fragment numbers	0-3	4-7	8-11	12-15
Block numbers	0	1	2	3

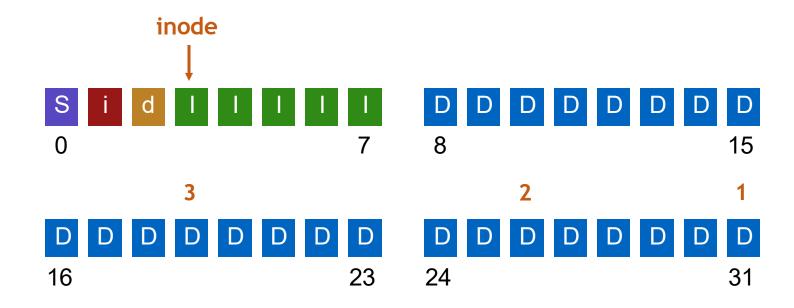
Using a Bitmap

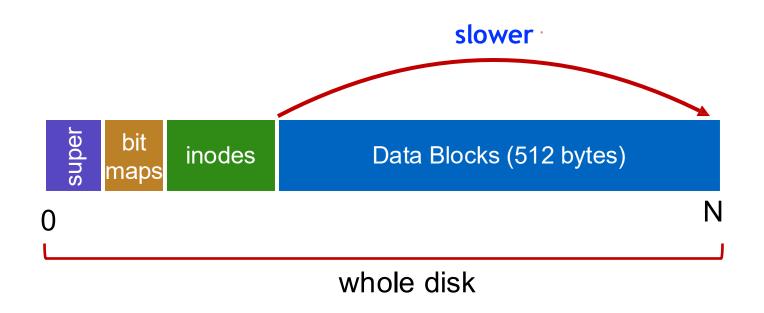
Usually keep entire bitmap in memory:

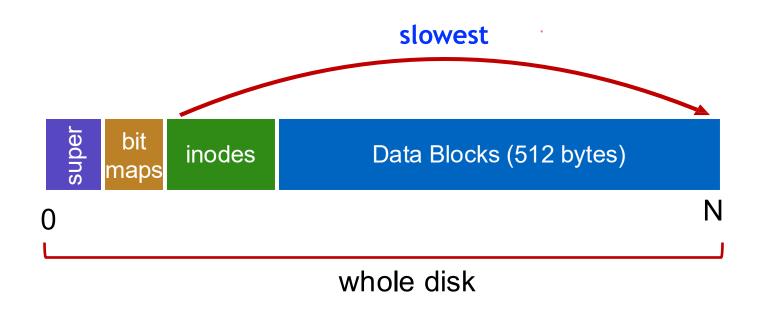

• 4G disk / 4K byte blocks. How big is map?

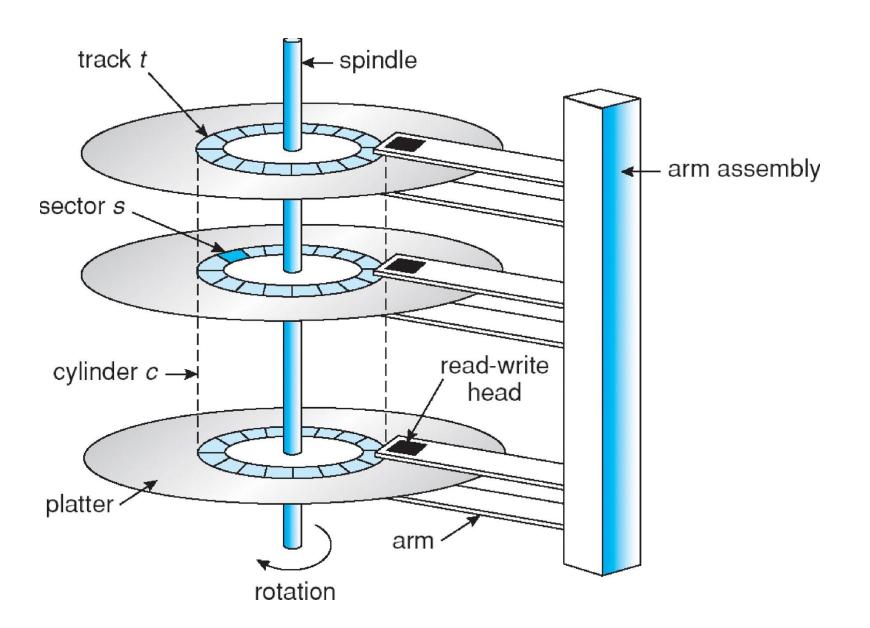

Allocate block close to block x?

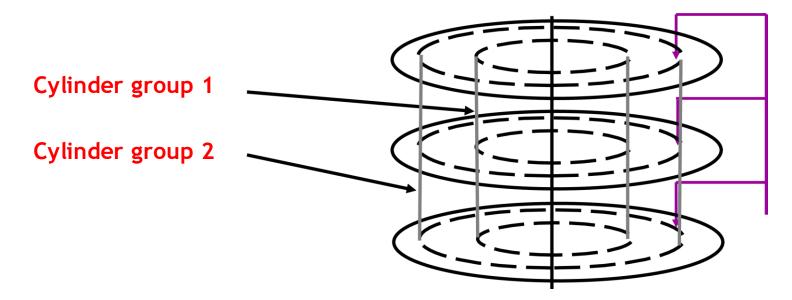
- Check for blocks near bmap[x/32]
- If disk almost empty, will likely find one near
- As disk becomes full, search becomes more expensive and less effective


Trade space for time (search time, file access time)





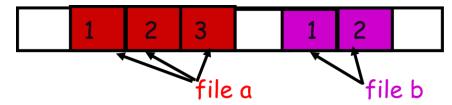

Example bad layout:



Recap: Cylinders, Trackers, & Sectors

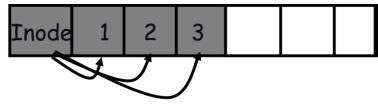
FFS Solution: Cylinder Group

Group sets of consecutive cylinders into "cylinder groups"


Key: can access any block in a cylinder without performing a seek. Next fastest place is adjacent cylinder.

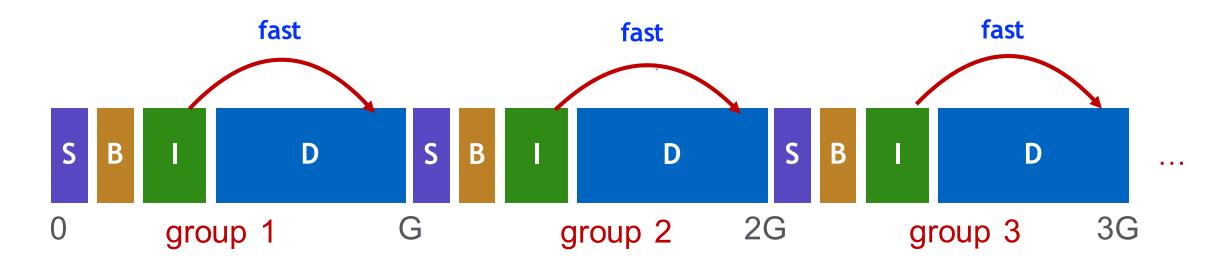
- Tries to put everything related in same cylinder group
- Tries to put everything not related in different group

Clustering in FFS


Tries to put sequential blocks in adjacent sectors

(Access one block, probably access next)

Tries to keep inode in same cylinder as file data:


• (If you look at inode, most likely will look at data too)

Tries to keep all inodes in a dir in same cylinder group

Access one name, frequently access many, e.g., "ls -l"

What Does Disk Layout Look Like Now?

How to keep inode close to data block?

- Answer: Use groups across disks
- Strategy: allocate inodes and data blocks in same group
- Each cylinder group basically a mini-Unix file system

Is it useful to have multiple super blocks?

Yes, if some (but not all) fail

FFS Results

Performance improvements:

- Able to get 20-40% of disk bandwidth for large files
- 10-20x original Unix file system!
- Stable over FS lifetime
- Better small file performance (why?)

Other enhancements

- Long file names
- Parameterization
- Free space reserve (10%) that only admin can allocate blocks from

Summary

File System Layouts

Unix inodes

File Buffer Cache

Strategies for handling writes

Fast File System

Next Time...

Read Chapter 43