CE 440 Introduction to Operating System

Lecture 18: Fast File System
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci



Midterm Result

Means: 39.78, Maximum: 60, std Dev: 9.23

Distribution:
>60: 1
(50, 60]:4
(45, 50]: 6
(40,45]: 14
(35,40]: 12
<35:12



Administrivia
Midterm solution will not be directly posted online

* The Rubric items are published in gradescope
* Canrequestto see the copy of sample solution in my office hour

Lab 4 is out, this is optional



File Systems Examples

BSD Fast File System (FFS)

* What were the problems with the original Unix FS?
* How did FFS solve these problems?

Log-Structured File system (LFS) - next lecture
* What was the motivation of LFS?
e How did LFS work?



Original Unix FS

From Bell Labs by Ken Thompson

Simple and elegant:

super

Unix disk layout
Components

. Data Blocks (512 bytes)
e Data blocks

* Inodes (directories represented as files)

* Free list
 Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head

of free list)

Problem: slow
* Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!



Why So Slow?

Problem 1: blocks too small (512 bytes)
* File index too large
* Require more indirect blocks
* Transferrate low (get one block at time)

Problem 2: unorganized freelist
 Consecutive file blocks not close together
o Pay seek cost for even sequential acces
* Aging: becomes fragmented over time

Problem 3: poor locality
* inodes far from data blocks
* inodes for directory not close together
o poor enumeration performance: e.g., “ls

b 14
)

grep foo *.c”



FFS: Fast File System

Desighed by a Berkeley research group for the BSD UNIX
* Aclassic file systems paper to read: [McKusic]

Approach:
* Measure an state of the art systems
* |dentify and understand the fundamental problems
o The original FS treats disks like random-access memory!
 Getanidea and build a better systems

Idea: design FS structures and allocation polices to be “disk aware”

Next: how FFS fixes the performance problems (to a degree)



Problem 1: Blocks Too Small

~=  Space Wasted =—a File Bandwidth

100

)]
o

Measurement:

Percent (%)

B
o

F_ L 1 1
5928 1024B 2048B 40968 1MB
Block Size

Bigger block increases bandwidth, but how to deal with wastage (“internal
fragmentation”)?
* Use idea from malloc: split unused portion



Solution: Fragments

BSD FFS:
* Has large block size (4096B or 8192B)
* Allow large blocks to be chopped into small ones called “fragments”
* Ensure fragments only used for little files or ends of files

N
file A file B

o Fragment size specified at the time that the file system is created

o Limit number of fragments per blockto 2, 4, or 8

Pros
* High transfer speed for larger files
* Low wasted space for small files or ends of files



Fragment Example

Block size: 4096 B
Fragment size: 1024 B

ﬁle size 5 KB file, size 2K B

\

DOEN N

10



Fragment Example

write (£d1, “A”); // append A to first file ' Block size: 4096 B

Fragment size: 1024 B
file, size 6KB file, size 2KB

/

y G

bl I

11



Fragment Example

write (£dl, ™“A”); // append A to first file ' Block size: 4096 B

file, size 7KB file, size 2KB

write (£d1, “a7); Fragment size: 1024 B

DOEONONNEN

Not allowed to use fragments across multiple blocks!

What to do instead?

12



Fragment Example

write (£dl, ™“A”); // append A to first file ' Block size: 4096 B

write (£d1, “a7); Fragment size: 1024 B

file, size 7KB file, size 2KB

copy old fragments to new block
new data use remaining fragments

13



Fragment Example

write (£d1, ) ; // append A to first file | Block size: 4096 B

\\A//
. Fragment size: 1024 B
write (fdl, “A”7); 9
\\A// ;

1t (fdl ’ 1 .
wELEE ) file, size 8KB file, size 2KB

14



Problem 2: Unorganized Freelist

Leads to random allocation of sequential file blocks overtime

Measurement:
 NewFS: 17.5% of disk bandwidth
e Few weeks old: 3% of disk bandwidth

Y\ ¥ ¢
VARV ERVERV.

O

Initial performance good Get worse over time

15



Fixing the Unorganized Freelist

Periodical compact/defragment disk
* Cons: locks up disk bandwidth during operation

Keep adjacent free blocks together on freelist
 Cons: costly to maintain

FFS: bitmap of free blocks
* Each bitindicates whether block is free
o E.g.,1010101111111000001111111000101100
 Easierto find contiguous blocks
 Small, so usually keep entire thing in memory
* Time tofind free blocks increases if fewer free blocks

* What about fragments in a block? Bits in map X XX00  O0XX 0000
Fragment numbers 0-3 4-7 8-11 12-15
Block numbers 0 1 2 3

16



Using a Bitmap

Usually keep entire bitmap in memory:
« 4G disk/ 4K byte blocks. How bigis map?

Allocate block close to block x?

* Check for blocks near bmap[x/32]
* |f disk almost empty, will likely find one near
* Asdisk becomes full, search becomes more expensive and less effective

Trade space for time (search time, file access time)

.m Data Blocks (512 bytes)
maps

super

17



Problem 3: Poor Locality

fast

inodes Data Blocks (512 bytes)

whole disk

How to keep inode close to data block?

18



Problem 3: Poor Locality

fast

inodes Data Blocks (512 bytes)

whole disk

How to keep inode close to data block?

19



Problem 3: Poor Locality

Example bad layout:

inode

|
slijaj i Jijiji] puojojojojojojojo
0 7 8 15

3 2 1
ojojejojojojojopyofofojoiolojofo
16 23 24 31

How to keep inode close to data block?

20



Problem 3: Poor Locality

slower-

. Data Blocks (512 bytes)
maps

0
|

super

whole disk

How to keep inode close to data block?

21



Problem 3: Poor Locality

slowest

—_

. Data Blocks (512 bytes)
maps

0
|

super

whole disk

How to keep inode close to data block?

22



Recap: Cylinders, Trackers, & Sectors

track t «— spindle
E ..t
| TS| <— arm assembly
sector s ! |
I
' 4
|
| |
I I
I I ]
cylinder ¢ —» | read-write
| | head
I I
I
Q I
platter
D

rotation

23



FFS Solution: Cylinder Group

Group sets of consecutive cylinders into “cylinder groups”

Cylinder group 1 __

Cylinder group 2 \

Key: can access any block in a cylinder without performing a seek. Next fastest place
is adjacent cylinder.

* Tries to put everything related in same cylinder group

* Tries to put everything not related in different group

24



Clustering in FFS

Tries to put sequential blocks in adjacent sectors
* (Access one block, probably access next)

s

file a file b
Tries to keep inode in same cylinder as file data:
* (If you look atinode, most likely will look at data to0)

i 1 1

Tries to keep all inodes in a dirin same cylinder group
* Access one name, frequently access many, e.g., “ls -l”

25



What Does Disk Layout Look Like Now?

fast fast fast
group 1 group 2 group 3

How to keep inode close to data block?
* Answer: Use groups across disks
 Strategy: allocate inodes and data blocks in same group
* Each cylinder group basically a mini-Unix file system

Is it useful to have multiple super blocks?
* Yes, if some (but not all) fail

26



FFS Results

Performance improvements:
* Able to get 20-40% of disk bandwidth for large files
* 10-20x original Unix file system!
* Stable over FS lifetime
* Better small file performance (why?)

Other enhancements
* Longfile names
* Parameterization
* Free space reserve (10%) that only admin can allocate blocks from

27



Read Chapter 43

Next Time...

28



	Slide 1: Lecture 18: Fast File System Fall 2025                            
	Slide 2: Midterm Result
	Slide 3: Administrivia
	Slide 4: File Systems Examples
	Slide 5: Original Unix FS
	Slide 6: Why So Slow?
	Slide 7: FFS: Fast File System
	Slide 8: Problem 1: Blocks Too Small
	Slide 9: Solution: Fragments
	Slide 10: Fragment Example
	Slide 11: Fragment Example
	Slide 12: Fragment Example
	Slide 13: Fragment Example
	Slide 14: Fragment Example
	Slide 15: Problem 2: Unorganized Freelist
	Slide 16: Fixing the Unorganized Freelist
	Slide 17: Using a Bitmap
	Slide 18: Problem 3: Poor Locality
	Slide 19: Problem 3: Poor Locality
	Slide 20: Problem 3: Poor Locality
	Slide 21: Problem 3: Poor Locality
	Slide 22: Problem 3: Poor Locality
	Slide 23: Recap: Cylinders, Trackers, & Sectors
	Slide 24: FFS Solution: Cylinder Group
	Slide 25: Clustering in FFS
	Slide 26: What Does Disk Layout Look Like Now?
	Slide 27: FFS Results
	Slide 28: Next Time…

