
Lecture 18: Fast File System

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Midterm Result

2

Means: 39.78, Maximum: 60, std Dev: 9.23

Distribution:
> 60: 1
(50, 60]:4
(45, 50]: 6
(40,45]: 14
(35,40]: 12
<35: 12

Administrivia

3

Midterm solution will not be directly posted online
• The Rubric items are published in gradescope
• Can request to see the copy of sample solution in my office hour

Lab 4 is out, this is optional

File Systems Examples

4

BSD Fast File System (FFS)
• What were the problems with the original Unix FS?
• How did FFS solve these problems?

Log-Structured File system (LFS) – next lecture
• What was the motivation of LFS?
• How did LFS work?

Original Unix FS

5

From Bell Labs by Ken Thompson

Simple and elegant:

Components
• Data blocks
• Inodes (directories represented as files)
• Free list
• Superblock. (specifies number of blks in FS, counts of max # of files, pointer to head

of free list)

Problem: slow
• Only gets 2% of disk maximum (20Kb/sec) even for sequential disk transfers!

Data Blocks (512 bytes)
s
u
p
e
r

inodes
free
list

Unix disk layout

Why So Slow?

6

Problem 1: blocks too small (512 bytes)
• File index too large
• Require more indirect blocks
• Transfer rate low (get one block at time)

Problem 2: unorganized freelist
• Consecutive file blocks not close together

o Pay seek cost for even sequential acces
• Aging: becomes fragmented over time

Problem 3: poor locality
• inodes far from data blocks
• inodes for directory not close together

o poor enumeration performance: e.g., “ls”, “grep foo *.c”

FFS: Fast File System

7

Designed by a Berkeley research group for the BSD UNIX
• A classic file systems paper to read: [McKusic]

Approach:
• Measure an state of the art systems
• Identify and understand the fundamental problems

o The original FS treats disks like random-access memory!
• Get an idea and build a better systems

Idea: design FS structures and allocation polices to be “disk aware”

Next: how FFS fixes the performance problems (to a degree)

Problem 1: Blocks Too Small

8

Measurement:

Bigger block increases bandwidth, but how to deal with wastage (“internal
fragmentation”)?

• Use idea from malloc: split unused portion

BSD FFS:
• Has large block size (4096B or 8192B)
• Allow large blocks to be chopped into small ones called “fragments”
• Ensure fragments only used for little files or ends of files

o Fragment size specified at the time that the file system is created
o Limit number of fragments per block to 2, 4, or 8

Pros
• High transfer speed for larger files
• Low wasted space for small files or ends of files

Solution: Fragments

9

file A file B

Fragment Example

10

AAAA

file, size 5KB file, size 2KB

B A B

Block size: 4096 B

Fragment size: 1024 B

Fragment Example

11

AAAA

file, size 6KB file, size 2KB

B A B A

Block size: 4096 B

Fragment size: 1024 B
write(fd1, “A”); // append A to first file

Fragment Example

12

AAAA

file, size 7KB file, size 2KB

B A B A A

Not allowed to use fragments across multiple blocks!

What to do instead?

Block size: 4096 B

Fragment size: 1024 B
“A”); // append A to first file

“A”);

write(fd1,

write(fd1,

Fragment Example

13

AAAA

file, size 7KB file, size 2KB

B B A A A

Block size: 4096 B

Fragment size: 1024 B

copy old fragments to new block

new data use remaining fragments

write(fd1,

write(fd1,

“A”); // append A to first file

“A”);

Fragment Example

14

AAAA AAAA

file, size 8KB file, size 2KB

B B

Block size: 4096 B

Fragment size: 1024 B
write(fd1,

write(fd1,

write(fd1,

“A”); // append A to first file

“A”);

“A”);

Problem 2: Unorganized Freelist

15

Get worse over timeInitial performance good

Leads to random allocation of sequential file blocks overtime

Measurement:
• New FS: 17.5% of disk bandwidth
• Few weeks old: 3% of disk bandwidth

Fixing the Unorganized Freelist

16

Periodical compact/defragment disk
• Cons: locks up disk bandwidth during operation

Keep adjacent free blocks together on freelist
• Cons: costly to maintain

FFS: bitmap of free blocks
• Each bit indicates whether block is free

o E.g., 1010101111111000001111111000101100
• Easier to find contiguous blocks
• Small, so usually keep entire thing in memory
• Time to find free blocks increases if fewer free blocks
• What about fragments in a block?

Using a Bitmap

17

Usually keep entire bitmap in memory:
• 4G disk / 4K byte blocks. How big is map?

Allocate block close to block x?
• Check for blocks near bmap[x/32]
• If disk almost empty, will likely find one near
• As disk becomes full, search becomes more expensive and less effective

Trade space for time (search time, file access time)

Data Blocks (512 bytes)

s
u
p
e
r

inodes
bit

maps

Problem 3: Poor Locality

18

Data Blocks (512 bytes)

s
u
p
e
r

inodes
bit

maps

0 N

whole disk

fast

How to keep inode close to data block?

Problem 3: Poor Locality

19

Data Blocks (512 bytes)

s
u
p
e
r

inodes
bit

maps

0 N

whole disk

fast

How to keep inode close to data block?

Problem 3: Poor Locality

20

Example bad layout:

D D D D D D D D

8

2

15

1

D D D D D D D D

24 31

S i d I I I I I

0

3

7

D D D D D D D D

16 23

inode

How to keep inode close to data block?

Problem 3: Poor Locality

21

Data Blocks (512 bytes)

s
u
p
e
r

inodes
bit

maps

0 N

whole disk

How to keep inode close to data block?

slower

Problem 3: Poor Locality

22

Data Blocks (512 bytes)

s
u
p
e
r

inodes
bit

maps

0 N

whole disk

How to keep inode close to data block?

slowest

Recap: Cylinders, Trackers, & Sectors

23

FFS Solution: Cylinder Group

24

Cylinder group 1

Cylinder group 2

Group sets of consecutive cylinders into “cylinder groups”

Key: can access any block in a cylinder without performing a seek. Next fastest place
is adjacent cylinder.

• Tries to put everything related in same cylinder group
• Tries to put everything not related in different group

Clustering in FFS

25

Tries to put sequential blocks in adjacent sectors
• (Access one block, probably access next)

Tries to keep inode in same cylinder as file data:
• (If you look at inode, most likely will look at data too)

Tries to keep all inodes in a dir in same cylinder group
• Access one name, frequently access many, e.g., “ls -l”

What Does Disk Layout Look Like Now?

26

DS B I

0 G

DS B I

2G

DS B I

3Ggroup 1 group 2 group 3

…

fast fast fast

How to keep inode close to data block?
• Answer: Use groups across disks
• Strategy: allocate inodes and data blocks in same group
• Each cylinder group basically a mini-Unix file system

Is it useful to have multiple super blocks?
• Yes, if some (but not all) fail

FFS Results

27

Performance improvements:
• Able to get 20-40% of disk bandwidth for large files
• 10-20x original Unix file system!
• Stable over FS lifetime
• Better small file performance (why?)

Other enhancements
• Long file names
• Parameterization
• Free space reserve (10%) that only admin can allocate blocks from

Next Time…

28

Read Chapter 43

	Slide 1: Lecture 18: Fast File System Fall 2025
	Slide 2: Midterm Result
	Slide 3: Administrivia
	Slide 4: File Systems Examples
	Slide 5: Original Unix FS
	Slide 6: Why So Slow?
	Slide 7: FFS: Fast File System
	Slide 8: Problem 1: Blocks Too Small
	Slide 9: Solution: Fragments
	Slide 10: Fragment Example
	Slide 11: Fragment Example
	Slide 12: Fragment Example
	Slide 13: Fragment Example
	Slide 14: Fragment Example
	Slide 15: Problem 2: Unorganized Freelist
	Slide 16: Fixing the Unorganized Freelist
	Slide 17: Using a Bitmap
	Slide 18: Problem 3: Poor Locality
	Slide 19: Problem 3: Poor Locality
	Slide 20: Problem 3: Poor Locality
	Slide 21: Problem 3: Poor Locality
	Slide 22: Problem 3: Poor Locality
	Slide 23: Recap: Cylinders, Trackers, & Sectors
	Slide 24: FFS Solution: Cylinder Group
	Slide 25: Clustering in FFS
	Slide 26: What Does Disk Layout Look Like Now?
	Slide 27: FFS Results
	Slide 28: Next Time…

