CE 440 Introduction to Operating System

Lecture 2: Architectural Support
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

Lab 0

* Done individually, due (09/19) night
* QOverview session on this Friday 2:30 - 4:00 PM, PHO305
 https://www.gradescope.com/courses/1115359

Project groups
* Talkwith neighborsin class, a google doc in piazza

https://www.gradescope.com/courses/1115359
https://www.gradescope.com/courses/1115359
https://www.gradescope.com/courses/1115359

Recap: What is an Operating System

An operating system s
* A software layer between applications and hardware
« “allthe code you didn’t write” to implement your application

Chrome VS code GCC Spotify

oS

—_

—
i Hardware j

/

Chrome VS code GCC Spotify

Recap: OS and Applications o

—

OS is main program
* Calls applications as subroutines
* [llusion: every app runs on its own computer

Provide protection
* Prevent one process messing other process

Provide sharing
* Concurrent execution of multiple programs
* Communication among multiple programs
* Shared implementations of common module like file system

How about A World of Anarchy?

Any program in the system can..

* Directly access I/O devices

* Write anywhere in memory

* Read contentfrom any memory address
* Execute machine haltinstruction

Do you trust such systems?
* Use banking application in this system
* Use social media application in this system

Challenge: protection
* How to execute a program with restricted privilege

A Solution

How about we implement execution with limited privilege?
* Execute each program instruction through a simulator(OS)
* |Iftheinstructionis permitted, do the instruction
e Otherwise, stop the process
 Slow: additional checking for each instruction

How do we go faster?
* Observation: most instruction are perfectly safe!
* Runthe unprivileged code directly on the CPU
* Leave the privileged code to the OS

Typical OS Structure
oloio ’)

user

>I<ernel VM IPC - .
scheduler e system
[Device] [Device] [Device]
driver driver driver
\ — J
/ v !
network console disk

* Most software runs as user-level processes
* OSkernelrunsin privileged mode (shaded)
o How does application communicate with OS

System Calls

are the interface to operating system services

e Tell OS to do something
* interface of OS

Application can invoke kernel through systems calls
 Special instruction transfers control to kernel
* ...which dispatches to one of few hundred syscall handlers

System Call: An Example

#include <fcntl.h>
#include <unistd. h>

int main() {
int fd = open(“ec440.txt”, O _WRONLY | O CREAT | O _TRUNC, 0644);
if (fd < 0) {
write(2, “Failed to open EC440.txt\n”, 25);
exit(1);
}
write(fd, “Hello, 0S!\n”, 11);
close(fd);
return 0;

} user application

A User mode

\ . Kernel mode

i > open()

More about System Calls

The only way for an application to invoke OS services

Goal:

* Do things application can not do in unprivileged mode
 Like alibrary call, butinto more privileged kernel code

Kernel supplies well-defined system call interface
* Applications set up syscall arguments and trap to kernel
* Kernel performs operation and returns result

10

How to Manipulate Privileged Machine State?

Hardware support

* Protected instructions
* Manipulate device registers, TLB entries, etc

A motherboard
(Intel B760)

11

H/W Support: Dual-Model Operation in CPU

User mode:
* Limited privileges
* Onlythose granted by the operating system kernel

Kernel mode:

* Execution with the full privileges of the hardware
* Read/write to any memory, access I/O device, read/write disk, send/read

packet

On the x86, the Current Privilege Level (CPL) in the CS register

On the MIPS, the status register .

A Simple Model of a CPU

Fetch instruction Decode instruction Execute Fetch nextinstruction
ﬁ
Program Instruction Branch Address
counter stream .. ;
e l
4 load !
8 add §
12 sub — i :
16 cmp) New PC | _d CPU.
20 ine 36 Select | .. S| Program | o Instructions
24 store 7 2 pc counter Fetch and
28 mov Execute [E
32 imp 44 / :
36 call :
opcode

A CPU with Dual-Mode Operation

eeeeeeee s >

Select
pcC

Handler PC STTTPTY SPRTTD °

Branch Address
_d CPU |
e program| Check f an instruction
counter Fetch and can be executed
Execute [
A Change mode upon certain
2 instructions (e.g., tra
........ > Select NewMode| [~
Mode) Mode D-..: .
—
5

14

Protected Instruction

A subset of instructions restricted to use only by the OS
* Known as protected (privileged) instructions

Only the operating system can ...
* Directly access I/O devices(disk, printers, etc.)
o Security, fairness(why?)
* Manipulate memory management state
o Page table pointers, page protection, TBL management, etc.
* Manipulate protected control registers
o Kernel mode, interrupt level
* Haltinstruction (why?)

15

An Example of Protected Instruction

INVLPG—Invalidate TLE Entries

Opcode Instruction Op/ 64-Bit | Com Description

En | Mode Leg Mode
| OF 0147 INVLPG m M| Wald ' Walid Invalidate TLE entries for page containing m.
NOTES: ' '

* %o the |A-32 Architecture Compatibility section below.

Instruction Operand Encoding

OpfEn Oparand 1 Operand 2 Operand 3 Operand 4
M ModRM:rm (r) NA WA WA
Description

Invalidates any translation lookaside buffer (TLB) entries specified with the source operand. The source operand is

amemory 1Em:h:l ress. The processor determines the page that contains that address and flushes all TLB entries for
that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected mode, the CPL must
be 0 to execute this instruction.

The INVLPG instruction normally flushes TLE entries only for the specified page; howewer, in some cases, it may
flush more entries, even the entire TLB. The instruction is guaranteed to invalidates only TLB entries associated

with the current PCID. {If PCIDs are disabled — CR4.PCIDE = 0 — the current PCID is 000H.) The instruction also
invalidates any global TLB entries for the specified page, regardless of PCID.

For more details on operations that flush the TLE, see "MOV—Mowe to/from Control Registars” in the Intel® 64 and
IA-32 Architectures Software Developers Manual, Volume 28 and Section 4.10.4.1, "Operations that Invalidate
TLBs and Paging-5Structure Caches,” in the Infel® 64 and IA-32 Architectures Software Developers Manual,

alume 34.

This instruction’s operation is the same in all non-&4-bit modes. It also operates the same in 64-bit mode, except
if the memory address is in non-canonical form. In this case, INVLPG is the same as a NOP.

16

Beyond Dual-Mode Operations

(Modern) CPU may provide more than 2 privilege levels

 Called hierarchical protection domains or protection rings
e X86 supports four levels:

o bottom 2 bits (CPL) of the CS register indicate execution privilege
o Ring 0 (CPL=00)is kernel mode, ring 3(CPL=11) is user mode

ARMv7 CPUs in modern smartphones have 8 level

ring 3
ring 2

ring 1
ring 0
kernel

Why?

Protect the OS from itself (software engineering)
Reserved for vendor, e.g. virtualization

17

Why Hardware Support?

OS functionality depends on the architectural features

 Keygoal of OS: protection and resource sharing
* Ifdone well, applications can be oblivious to HW detalils

Architectural support can greatly simplify OS tasks
* Early DOS/MacQOS lacked virtual memory in part because the hardware

did not support it
 EarlySun 1 computers used two M68000 CPUs to implement virtual

memory

18

Architectural Feature for OS

What architectural feature that directly support the OS?
* Protection(kernel/user mode)
* Protected instructions
* Bootstrapping (Lab 0)
* Memory protection

> Protection

-/
e System calls)
* Interrupts and exceptions >
e Timer Handling ”events”
* |/O control and operation D

* Synchronization > Concurrency

Architectural Feature for OS

What architectural feature that directly support the OS?

\

> Protection

* Memory protection

J\.

~ Handling ”events”

Concurrency

20

Memory Protection

What is Memory Protection?

* OS protect programs from each other
* OS protect itself from user programs

Memory management hardware (MMU) provides the mechanisms
* Based and limit register
* Page table pointers, page protection, segmentation, TLB
* Manipulating the hardware uses protected (privileged) operations

Can we trust the 0OS?

* May or may not protect user program from OS
* Untrusted operating systems? (Intel SGX)

21

Simple Memory Protection

Memory access bounds check Problems?
Physical e |nflexible
Memory

o Fix allocation, difficult to
expand heap and stack

Base

Physical * |Inconvenient
Address o Require changes to mem
Processor [* == =ssssssssmsnssmnsnnnsnnnnsnannsnnnnnss > . . .
= Instruction each time the
Base program is loaded
: : Base +* Fragmentation
Freneess > é) Bound o Many*“ holes” of memory that

are free but cannot be used

22

Solution: Virtual Address

Programs refer to memory by virtual addresses

e StartfromO
* [llusion of “owning” the entire memory address space

The virtual address is translated to physical address
e Uponeach memoryaccess
* Doneinhardware(MMU) using a table
 Table setup by the OS

23

Types of Arch Support

What architectural feature that directly support the OS?

\

> Protection

J \

e System calls
* Interrupts and exceptions

* Timer >~ Handling ’events”
 |/O control and operation

Events

An Eventis an “unnatural” change in OS execution

* Eventimmediately stop current execution
* Changes mode, context (machine state)

The kernel (OS) defines a handler for each event type
* The specific types of events are defined by the architecture
o E.g., timerevent, I/0O interrupt, system call trap
* |neffect, the operating system is on big event handler

25

OS Execution

After OS booting, all entry to kernelis a result of some event
* Eventimmediately stops current execution
* Changes mode to kernel mode
* |nvoke a piece

Architectural support can greatly simplify OS tasks
* Early DOS/MacQOS lacked virtual memory in part because the hardware
did not support it
 EarlySun 1 computers used two M68000 CPUs to implement virtual

memory

26

Kernel

Workflow of OS Execution Flow

\ 4

User Process

User Mode
Mode bit =1

Resume Process

A

boundary

Trap
Mode bit=0

\ 4

Save caller state

Kernel Mode
Mode bit=0

A 4

Handler

Return
Mode bit = 1

\ 4

Restore caller state

27

Event: Interrupt vs. Exceptions

Two kinds of events, and exceptions

Interrupts are caused by an external event ()
* Device finishes |/0O, timer expires, etc.

Exceptions are caused by executing instructions (synchronous)
* X86 intinstruction, page fault, divide by zero, etc.

28

Interrupts

Interrupts signal asynchronous event
* |ndicates some device needs services
 |/O hardware interrupts
 Software and hardware timers

Challenges of realizing interrupts
* A computeris more than CPU
o Keyboard, disk, printer, camera, etc.
* OS cannot predict when the signal will be sent by these devices

29

How about Polling?

CPU periodically checks if each device needs service

Easy to implement
Can be efficient if events arrive rapidly

- Takes CPU time when there are no events pending
- Reduce checking frequency — longer response time

“Polling is like picking up your phone every
few seconds to see if you have a call ...”

30

Give Each Device a Wire

IRQs

Ethernet - Problems?

_ e CPU might get interrupted no-stop
SCSI Disk ’ Some device may overwhelm CPU

Real.Time Clock Critical mterrupt. de.layed.
CPU * Interrupts handling inflexible (“hard-
Sound Card > coded”)
Keyboard Controller

170 devices wired with Interrupt RequestLines (IRQs)
“Interrupts are like waiting for the phone to ring.”

31

A Better Solution: Interrupt Controller

Legacy PC Design IRQs
Ethernet
SCS| Disk »| Secondary | Primary x86
J PIC(8259) | PIC(8259) INTR CPU
Real-Time Clock > >]
Keyboard Controller Programmable Interval-Timer

This hardware is called a Programmable Interrupt Controller (PIC)
 |/O devices have (unique or shared) Interrupt Request Lines (IRQs)
* |RQs are mapped by special hardware to interrupt vectors and passed to the CPU

32

The Interrupt Controller
PIC: Programmable Interrupt Controller (8259A)

* Telling the CPU when and which device wishes to ‘interrupt’
* Has 16 wires to devices (IRQ0 -1RQ15)

PIC translates IRQs to CPU interrupt vector number |

* Vector numberis signaled over INTR line
* In Pintos: IRQO0-15 delivers to vector 32-47 (src/threads/interrupt.c)

Interrupts can have varying priorities
* PIC also needs to prioritize multiple requests

Possible to “mask’(disable) interrupts at PIC or CPU

33

https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html
https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html
https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html
https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html

Software Interface: Interrupt Vector Table

A data structure to associate interrupt requests with handlers

* Each entryis aninterruptvector (specifies the address of the handler)
* Architecture-specific implementation

Processor
Register

Interrupt
Vector

.................................. > handleTimepInterrupt () {

}

.................................. » handleDivideByZero() {

}

................................... » handlesystemcall() {

} 34

Software Interface: Interrupt Vector Table

A data structure to associate interrupt requests with handlers

* Each entryis aninterruptvector (specifies the address of the handler)
* Architecture-specific implementation

In Xx86 called Interrupt Descriptor Table (IDT)
e Support 256 interrupts, so the IDT contains 256 entries

* Each entry specifies the address of the handler plus some flags
* Programmed by the OS

o InPintos: make_intr_gate (src/threads/interrupt.c)

35

https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html

When a key is pressed..

4 . N

IRQs

Example: Press a Keyboard

Primary PIC

Vector
number

Vector Table

|2

Set up the interrupt table

>« Talks to keyboard
* Asks what key was pressed
* Does something about it:
o printsthe key on screen
o notifies applications

OS tasks

_—

36

Interrupt Use Case 1: Timers

Itis the fallback mechanism for OS to reclaim control over the
machine

* Timeris setto generate an interrupt after a period of time

 Setting timer is a privileged instruction

* When timer expires, generate an interrupt

* Handled by kernel, which controls resumption context
o Basis for OS scheduler (more later ..)

Prevents infinite loops

* (OS can always regain control from buggy or malicious program that try
to hog CPU

Also Used for time-based functions (e.g. sleep())

37

Timer in Pintos
Needed in Pintos Lab1’s Alarm Clock exercise

/* Sets up the timer to interrupt TIMER FREQ times per second,
and registers the corresponding interrupt.*/

void timer_init(void) {
pit_configure channel (O, 2, TIMER FREQ);
intr_register_ext (0x20, timer_interrupt, "8254 Timer");

}

/* Timer interrupt handler. */
static void timer_interrupt (struct intr_frame *args UNUSED)

{

ticks++;

/* Called by the timer 1interrupt
handler at each timer tick. */
void thread_tick (void)

{

thread tick ();

struct thread *t = thread current();
/* Update statistics. */
if (t == idle_thread)
idle ticks++;
else
kernel ticks++;
/* Enforce preemption. */
if (++thread_ticks >= TIME SLICE)
intr_yield on _return ();

38

Interrupt Use Case 2: |/O Control

/0 issues
* Initiating an I/0O
e Completinganl/O

Interrupts are the basis for asynchronous I/0
e OSinitiates |I/0
* Device operates independently for rest of machine
* Device sends aninterrupt signalto CPU when done
e OS maintains an interrupt vector tables (IVT)
e CPU looks up IVT by interrupt number, context switches to rountine

39

Event: Interrupt vs. Exceptions

Exceptions are caused by executing instructions (synchronous)
* X86 intinstruction, page fault, divide by zero, etc.
* Adeliberate exception is a “trap”, while unexpected exception is a “fault”
* CPU requires software intervention to handle a fault or trap

40

Deliberate Exception: Trap

A trap is an intentional software-generated exception

* the main mechanism for programs to interact with the OS
* On x86, programs use the int instruction to cause a trap
e On ARM, SVC instruction

Handler for trap is defined in interrupt vector table
 Kernelchooses one vector for representing system calltrap
e e.g.,int $0x80 isusedtoinLinuxto make system calls
* Pintosusesint $0x30 for system calltrap

41

System Call Trap

For a user program to “call” OS service
* Known as crossing the protection boundary or protected control transfer

The system call instruction
« (Causes an exception, which vectors to a kernel handler
* Passes a parameter determining the system routine to call

movl $20, %eax # Get PID of current process
int $0x80 # Invoke system call!
Now %eax holds the PID of the current process

* Saves caller state(PC, regs, mode) so it can be restored
* Returning from system call restores this state

Requires architectural support to:
* Restore saved state, reset mode, resume execution e

System Call: Workflow

User mode

Kernel mode

#include <fcntl.h>
int main() {
int fd = open(“ec440.txt”);

return 0; A\

Put code for open in register
m—a———

e ————
Trap to kernel

~i [

Return to caller \[\

User program

Stand C Library

[syscall_table H sys_open()]‘

43

System Call

Chrome: read()

Trap to
kernel mode,
User mode save state

Kernel mode v

Trap handler * Restore state,
Find read Return to user level

. ° 1 N
handler in resume executio

! vector table

read() kernel routine

44

LINUX System Call Quick Reference
Bk, i o

hittp o bigfood com-jalong Ee

Introduction

Syatem call 18 the servises provided by Linus kemel In © programening, i allén uses et delined in libe
which provides o wrapper for many svsiem calls. Manual page section 2 provides more infomation about
system calls. To pet an overview, use “man 2 intro” in & command shell.

It is also possible to mvoke syscall) fmction directly. Each systens call has a function number efined in
=gysenll b= or <anistd. b Intermally, system call s imeokded by soffaare intermupt Ocf0 1o transfer control 1o
the kemel. Svstem call table is defimed in Linux kemnel source file arehidS6 kernelentry.5 "

System Call Example

$include <syscall . h>
$includa <unistd.h>
finclude <stdio.h>
finclude <sys/typas.h>

int mainiwald) [

leng ID1, IDE;
|
§* diract system call .
#* EY3 getpid (func na. is 20] =f
S ——— Y

IDl = syscall (3¥YE gatpid))

printf ("sys2all{3¥s gatpidl=tld\n®, ID1)}

S M |
f* "libeo" wrapped system call &f
4% E¥3 getpid (Func MNa. is 20] *f
R I |

IfZ = gatpldil}
printf {"getpldi}=%ld\n", I0O3);

reburnd)

System Call Quick Reference

Mo Func Mame Description Source
1 exit tgrmisste the currenl prosess hermeliaring
T [k create o child process e A bermelprooess.c
3 read reand Froam a e descrplor feirpond watiex
4 wrile write to a file descriptor inead_vrtes
% spen opn & like or divics {inren ¢
& closs cloge & lile deserplor fxinren ¢
T wadtpid wait for process termination kernelienite

1
11
12
13
14
]
1]
]
M
|
11
1
13

15
b

b
H
0
0
3
34
16
Y
k2
1
40
41
a1
43

435

46
47
48
48
D

LINUX System Call Quick

FERBRE

chmad

|

15

wmasunt

EE

e

truce

-]

H

time

EEEEEE?EEEEEEEE

getegid

ereite a fle or devia: ("man 2 open™ [
mlilion)

mizke & pew name for a file

elete a name amd possably the 15k i relier 1o
exXECUlE rogram

change working directory

el bime in secondy

creme a special or ardinary file

shange permsasiorsof a fils

change cenership of a file

et file alatug

repesition read'wnze file affses

et process identification

ol fleswaicms

ammount filesysiems

wed rial aser [D

et real mser [0

dl e Tithe aimd <l

albowes o parent process to comtral the execution of
a child process

set an alarm clock for delivery of a signal
et file altug

saspend process il Sgnal

wet Tl s osn and modificatom lines
check user's permissions for o Gle
changi proces prarily

wpdate the saper block

send sigmal to a process

shanpe the taiie of lodation ol ik
creale a directory

mEmee & dmeciony

daplicate an open file descriptor
ereale 4 mlarproces ¢hansel

el process times

chanpge the amourt ol gpace allocasd for the
calling process’s diin segment

sl red o 10

et real group 1D
AMEIC signal Bandling
et effective user ID

et elledtive group [T

Reference

ey

Tl o
Sty o
arcki At tormelprocess.c
[lapen.c
kermeltime.c
(eimamesl o
Ty,
Ehwen.c
st
(read writec
kemelsofed .
Tniraer o
(Riraner.e
kermelin.c
kernaldeoked .
kermellime.c

archA3 8 kernelipirace.

kermelisched.e

st

archA 38 kernelisys_(386.c
Tniompey

[iypen.c

kermelerker ¢

(baffor.c

kernelsignal.c

om0

el o

Lo

ffend.e

FET SRR L St AT R R T
kernelins.e

A R L

kermelin. e

Jemolsoked .
kermelisipnal e
Kerneldecked o
kerneliecked o

45

Any Questions about System Call

What would happen if the kernel did not save state?

What if the kernel executes a system call?

How to reference kernel objects as arguments or results to/from
syscalls?
* Anamingissue
* Useinteger object handles or descriptors
o E.g.Unix file descriptors, Windows, HANDLEs
o Only meaningful as parameters to other system calls

46

Unexpected Exception: Faults

Hardware detects and reports “exceptional” conditions
 Page fault, unaligned access, divide by zero

Upon exception, hardware “faults” (verb)
* Must save state(PC, regs, mode, etc.) so that the faulting process can be
restarted

Faults are not necessarily “bad”

* Modern Oses uses virtual memory faults for many function
o Debugging, end-of-stack, garbage collection, copy-on-write

Fault exceptions are essentially a performance optimization

47

Handling Faults

Some faults are handled by “fixing”...
* “Fix” the exceptional condition and return to the faulting context
 Page faults cause the OSto place the missing page into memory
* Fault handlerresets pc to re-execute instruction that caused the fault

Some fault are handled by notifying the process
* Fault handler changes the saved context to transfer control to a user
model handler

* Handler must be registered with OS
* Unixsignals or Win user-mode Async Procedure Calls (APCs)

48

Handling Faults (2)

Kernel may handle unrecoverable faults by killing the process
* Program fault with no registered handler
* Halt process, write process state to file, destroy process
* In Unix, the default action for many signals (e.g. SIGSEGV)

What about faults in the kernel?
* Dereference NULL, divide by zero, undefined instruction
* These faults considered fatal, operating system crashes

* Unix panic, Windows “Blue screen of death”
o Kernelis halted, state dumped to a core file, machine locked up

49

Types of Arch Support

What architectural feature that directly support the OS?

\

> Protection

J \

- Handling ”events”

-/
* Synchronization

o Interrupt disabling/enabling, atomic instructions

50

Synchronization

Interrupts cause difficult problems

* Aninterruptcan occur at any time
* A handler can execute that interferes with code that was interrupted

OS must be able to synchronize concurrent execution

Need to guarantee that short instruction sequences execute

atomically
* Disable interrupts — turn off interrupts before sequence, execute

seqguence, turn interrupts back on
* Special atomic instructions — read/modify/write a memory address, test

and conditionally set a bit based upon previous value

51

Summary

Protection

e User/kernel modes
e Protected instructions

Unexpected Deliberate
I nterru ptS Exceptions (sync) fault syscall trap
¢ Tim er, /O Interrupts (async) interrupt Software interrupt

System calls
* Used by user-level processes to access OS functions

Exceptions
* Unexpected event during execution

Next Time..
Read Chapters 4-6 (Processes)

Lab0

53

	Slide 1: Lecture 2: Architectural Support Fall 2025
	Slide 2: Administrivia
	Slide 3: Recap: What is an Operating System
	Slide 4: Recap: OS and Applications
	Slide 5: How about A World of Anarchy?
	Slide 6: A Solution
	Slide 7: Typical OS Structure
	Slide 8: System Calls
	Slide 9: System Call: An Example
	Slide 10: More about System Calls
	Slide 11: How to Manipulate Privileged Machine State?
	Slide 12: H/W Support: Dual-Model Operation in CPU
	Slide 13: A Simple Model of a CPU
	Slide 14: A CPU with Dual-Mode Operation
	Slide 15: Protected Instruction
	Slide 16: An Example of Protected Instruction
	Slide 17: Beyond Dual-Mode Operations
	Slide 18: Why Hardware Support?
	Slide 19: Architectural Feature for OS
	Slide 20: Architectural Feature for OS
	Slide 21: Memory Protection
	Slide 22: Simple Memory Protection
	Slide 23: Solution: Virtual Address
	Slide 24: Types of Arch Support
	Slide 25: Events
	Slide 26: OS Execution
	Slide 27: Workflow of OS Execution Flow
	Slide 28: Event: Interrupt vs. Exceptions
	Slide 29: Interrupts
	Slide 30: How about Polling?
	Slide 31: Give Each Device a Wire
	Slide 32: A Better Solution: Interrupt Controller
	Slide 33: The Interrupt Controller
	Slide 34: Software Interface: Interrupt Vector Table
	Slide 35: Software Interface: Interrupt Vector Table
	Slide 36: Example: Press a Keyboard
	Slide 37: Interrupt Use Case 1: Timers
	Slide 38: Timer in Pintos
	Slide 39: Interrupt Use Case 2: I/O Control
	Slide 40: Event: Interrupt vs. Exceptions
	Slide 41: Deliberate Exception: Trap
	Slide 42: System Call Trap
	Slide 43: System Call: Workflow
	Slide 44: System Call
	Slide 45: LINUX System Call Quick Reference
	Slide 46: Any Questions about System Call
	Slide 47: Unexpected Exception: Faults
	Slide 48: Handling Faults
	Slide 49: Handling Faults (2)
	Slide 50: Types of Arch Support
	Slide 51: Synchronization
	Slide 52: Summary
	Slide 53: Next Time..

