
Lecture 2: Architectural Support

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

2

Lab 0
• Done individually, due next Friday (09/19) night
• Overview session on this Friday 2:30 - 4:00 PM, PHO305
• https://www.gradescope.com/courses/1115359

Project groups
• Talk with neighbors in class, a google doc in piazza

https://www.gradescope.com/courses/1115359
https://www.gradescope.com/courses/1115359
https://www.gradescope.com/courses/1115359

Recap: What is an Operating System

3

An operating system is
• A software layer between applications and hardware
• “all the code you didn’t write” to implement your application

OS

Chrome

Hardware

VS code GCC Spotify

Recap: OS and Applications

4

OS is main program
• Calls applications as subroutines
• Illusion: every app runs on its own computer

Provide protection
• Prevent one process messing other process

Provide sharing
• Concurrent execution of multiple programs
• Communication among multiple programs
• Shared implementations of common module like file system

OS

Chrome

Hardware

VS code GCC Spotify

How about A World of Anarchy?

5

Any program in the system can..
• Directly access I/O devices
• Write anywhere in memory
• Read content from any memory address
• Execute machine halt instruction

Do you trust such systems?
• Use banking application in this system
• Use social media application in this system

Challenge: protection
• How to execute a program with restricted privilege

A Solution

6

How about we implement execution with limited privilege?
• Execute each program instruction through a simulator(OS)
• If the instruction is permitted, do the instruction
• Otherwise, stop the process
• Slow: additional checking for each instruction

How do we go faster?
• Observation: most instruction are perfectly safe!
• Run the unprivileged code directly on the CPU
• Leave the privileged code to the OS

Typical OS Structure

7

• Most software runs as user-level processes
• OS kernel runs in privileged mode (shaded)

o How does application communicate with OS

P1 P1 P1 P1

user

kernel

Device
driver

Device
driver

Device
driver

network console disk

VM IPC
File system

scheduler

System Calls

8

System calls are the interface to operating system services
• Tell OS to do something
• interface of OS

Application can invoke kernel through systems calls
• Special instruction transfers control to kernel
• … which dispatches to one of few hundred syscall handlers

i

System Call: An Example

9

#include <fcntl.h>
#include <unistd.h>

int main() {
 int fd = open(“ec440.txt”, O_WRONLY | O_CREAT | O_TRUNC, 0644);
 if (fd < 0) {
 write(2, “Failed to open EC440.txt\n”, 25);
 exit(1);
 }
 write(fd, “Hello, OS!\n”, 11);
 close(fd);
 return 0;
} user application

User mode

Kernel mode•
•
•

•
•
•

open()

More about System Calls

10

The only way for an application to invoke OS services

Goal:
• Do things application can not do in unprivileged mode
• Like a library call, but into more privileged kernel code

Kernel supplies well-defined system call interface
• Applications set up syscall arguments and trap to kernel
• Kernel performs operation and returns result

How to Manipulate Privileged Machine State?

11

Hardware support
• Protected instructions
• Manipulate device registers, TLB entries, etc

A motherboard
(Intel B760)

H/W Support: Dual-Model Operation in CPU

12

User mode:
• Limited privileges
• Only those granted by the operating system kernel

Kernel mode:
• Execution with the full privileges of the hardware
• Read/write to any memory, access I/O device, read/write disk, send/read

packet

On the x86, the Current Privilege Level (CPL) in the CS register

On the MIPS, the status register

A Simple Model of a CPU

13

Fetch instruction Decode instruction Execute Fetch next instruction …

Program
counter

Instruction
stream

4

8

12

16

20

24

28

32

36

…

load

add

sub

cmp

jne 36

store

mov

jmp 44

call

…

Select
pc

New PC
Program
counter

CPU
Instructions

Fetch and
Execute

+4

opcode

Branch Address

A CPU with Dual-Mode Operation

14

Select
pc

New PC
Program
counter

CPU
Instructions

Fetch and
Execute

+4

opcode

Branch Address

Handler PC

Select
Mode

New Mode
Mode

Change mode upon certain
instructions (e.g., trap)

Check if an instruction
can be executed

Protected Instruction

15

A subset of instructions restricted to use only by the OS
• Known as protected (privileged) instructions

Only the operating system can …
• Directly access I/O devices(disk, printers, etc.)

o Security, fairness(why?)
• Manipulate memory management state

o Page table pointers, page protection, TBL management, etc.
• Manipulate protected control registers

o Kernel mode, interrupt level
• Halt instruction (why?)

16

An Example of Protected Instruction

(Modern) CPU may provide more than 2 privilege levels
• Called hierarchical protection domains or protection rings
• X86 supports four levels:

o bottom 2 bits (CPL) of the CS register indicate execution privilege
o Ring 0 (CPL = 00) is kernel mode, ring 3(CPL=11) is user mode

• ARMv7 CPUs in modern smartphones have 8 level

Why?
• Protect the OS from itself (software engineering)
• Reserved for vendor, e.g. virtualization

Beyond Dual-Mode Operations

17

kernel

ring 0

ring 1
ring 2
ring 3

Why Hardware Support?

18

OS functionality depends on the architectural features
• Key goal of OS: protection and resource sharing
• If done well, applications can be oblivious to HW details

Architectural support can greatly simplify OS tasks
• Early DOS/MacOS lacked virtual memory in part because the hardware

did not support it
• Early Sun 1 computers used two M68000 CPUs to implement virtual

memory

Architectural Feature for OS

19

What architectural feature that directly support the OS?
• Protection(kernel/user mode)
• Protected instructions
• Bootstrapping (Lab 0)
• Memory protection
• System calls
• Interrupts and exceptions
• Timer
• I/O control and operation
• Synchronization

Protection

Handling ”events”

Concurrency

Architectural Feature for OS

20

What architectural feature that directly support the OS?
• Protection(kernel/user mode)
• Protected instructions
• Bootstrapping (Lab 0)
• Memory protection
• System calls
• Interrupts and exceptions
• Timer
• I/O control and operation
• Synchronization

Protection

Handling ”events”

Concurrency

Memory Protection

21

What is Memory Protection?
• OS protect programs from each other
• OS protect itself from user programs

Memory management hardware (MMU) provides the mechanisms
• Based and limit register
• Page table pointers, page protection, segmentation, TLB
• Manipulating the hardware uses protected (privileged) operations

Can we trust the OS?
• May or may not protect user program from OS
• Untrusted operating systems? (Intel SGX)

Simple Memory Protection

22

Problems?
• Inflexible

o Fix allocation, difficult to
expand heap and stack

• Inconvenient
o Require changes to mem

instruction each time the
program is loaded

• Fragmentation
o Many “ holes” of memory that

are free but cannot be used

Physical
Memory

Base

Base +
Bound

Processor

Raise
Exception>

<

Physical
Address

Base

Bound

Memory access bounds check

Solution: Virtual Address

23

Programs refer to memory by virtual addresses
• Start from 0
• Illusion of “owning” the entire memory address space

The virtual address is translated to physical address
• Upon each memory access
• Done in hardware(MMU) using a table
• Table setup by the OS

Types of Arch Support

24

What architectural feature that directly support the OS?
• Protection(kernel/user mode)
• Protected instructions
• Bootstrapping (Lab 0)
• Memory protection
• System calls
• Interrupts and exceptions
• Timer
• I/O control and operation
• Synchronization

Protection

Handling ”events”

Events

25

An Event is an “unnatural” change in OS execution
• Event immediately stop current execution
• Changes mode, context (machine state)

The kernel (OS) defines a handler for each event type
• The specific types of events are defined by the architecture

o E.g., timer event, I/O interrupt, system call trap
• In effect, the operating system is on big event handler

OS Execution

26

After OS booting, all entry to kernel is a result of some event
• Event immediately stops current execution
• Changes mode to kernel mode
• Invoke a piece

Architectural support can greatly simplify OS tasks
• Early DOS/MacOS lacked virtual memory in part because the hardware

did not support it
• Early Sun 1 computers used two M68000 CPUs to implement virtual

memory

Workflow of OS Execution Flow

27

Kernel
boundary

User Process

Trap
Mode bit = 0

Save caller state Handler

Kernel Mode
Mode bit = 0

User Mode
Mode bit = 1

Restore caller state

Return
Mode bit = 1

Resume Process

Event: Interrupt vs. Exceptions

28

Two kinds of events, interrupts and exceptions

Interrupts are caused by an external event (asynchronous)
• Device finishes I/O, timer expires, etc.

Exceptions are caused by executing instructions (synchronous)
• X86 int instruction, page fault, divide by zero, etc.

Interrupts

29

Interrupts signal asynchronous event
• Indicates some device needs services
• I/O hardware interrupts
• Software and hardware timers

Challenges of realizing interrupts
• A computer is more than CPU

o Keyboard, disk, printer, camera, etc.
• OS can not predict when the signal will be sent by these devices

How about Polling?

30

CPU periodically checks if each device needs service
+ Easy to implement
+ Can be efficient if events arrive rapidly
- Takes CPU time when there are no events pending
- Reduce checking frequency → longer response time

“ Polling is like picking up your phone every
few seconds to see if you have a call …”

Give Each Device a Wire

31

Keyboard Controller

Ethernet

SCSI Disk

Real-Time Clock

Sound Card

…

x86
CPU

IRQs
Problems?
• CPU might get interrupted no-stop
• Some device may overwhelm CPU
• Critical interrupt delayed
• Interrupts handling inflexible (“hard-

coded”)

I/O devices wired with Interrupt Request Lines (IRQs)
“Interrupts are like waiting for the phone to ring.”

A Better Solution: Interrupt Controller

32

Secondary
PIC(8259)

IRQs

Keyboard Controller

Ethernet
SCSI Disk

Real-Time Clock

Programmable Interval-Timer

Legacy PC Design

Primary
PIC(8259)

x86
CPUINTR

This hardware is called a Programmable Interrupt Controller (PIC)
• I/O devices have (unique or shared) Interrupt Request Lines (IRQs)
• IRQs are mapped by special hardware to interrupt vectors and passed to the CPU

The Interrupt Controller

33

PIC: Programmable Interrupt Controller (8259A)
• Telling the CPU when and which device wishes to ‘interrupt’
• Has 16 wires to devices (IRQ0 – IRQ15)

PIC translates IRQs to CPU interrupt vector number
• Vector number is signaled over INTR line
• In Pintos: IRQ0-15 delivers to vector 32-47 (src/threads/interrupt.c)

Interrupts can have varying priorities
• PIC also needs to prioritize multiple requests

Possible to “mask”(disable) interrupts at PIC or CPU

https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html
https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html
https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html
https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html

Software Interface: Interrupt Vector Table

34

A data structure to associate interrupt requests with handlers
• Each entry is an interrupt vector (specifies the address of the handler)
• Architecture-specific implementation

…

Processor
Register

Interrupt
Vector

…

handleTimerInterrupt () {
 . . .
}

handleDivideByZero() {
 . . .
}

handleSystemCall() {
 . . .
}

Software Interface: Interrupt Vector Table

35

A data structure to associate interrupt requests with handlers
• Each entry is an interrupt vector (specifies the address of the handler)
• Architecture-specific implementation

In x86 called Interrupt Descriptor Table (IDT)
• Support 256 interrupts, so the IDT contains 256 entries
• Each entry specifies the address of the handler plus some flags
• Programmed by the OS

o In Pintos: make_intr_gate (src/threads/interrupt.c)

https://jhu-cs318.github.io/pintos-doxygen/html/interrupt_8c_source.html

Example: Press a Keyboard

36

When a key is pressed..

IRQs

Primary PIC

Vector Table

…

…

Vector
number

handler
• Talks to keyboard
• Asks what key was pressed
• Does something about it:

o prints the key on screen
o notifies applications

Set up the interrupt table

OS tasks

Interrupt Use Case 1: Timers

37

It is the fallback mechanism for OS to reclaim control over the
machine

• Timer is set to generate an interrupt after a period of time
• Setting timer is a privileged instruction
• When timer expires, generate an interrupt
• Handled by kernel, which controls resumption context

o Basis for OS scheduler (more later ..)

Prevents infinite loops
• OS can always regain control from buggy or malicious program that try

to hog CPU

Also Used for time-based functions (e.g. sleep())

Timer in Pintos

38

Needed in Pintos Lab1’s Alarm Clock exercise

/* Sets up the timer to interrupt TIMER_FREQ times per second,
and registers the corresponding interrupt.*/

void timer_init(void) {
 pit_configure_channel (0, 2, TIMER_FREQ);
 intr_register_ext (0x20, timer_interrupt, "8254 Timer");
}

/* Timer interrupt handler. */
static void timer_interrupt (struct intr_frame *args UNUSED)
{
 ticks++;
 thread_tick ();
}

/* Called by the timer interrupt
handler at each timer tick. */
void thread_tick (void)
{
 struct thread *t = thread_current();
 /* Update statistics. */
 if (t == idle_thread)
 idle_ticks++;
 else
 kernel_ticks++;
 /* Enforce preemption. */
 if (++thread_ticks >= TIME_SLICE)
 intr_yield_on_return ();
}

Interrupt Use Case 2: I/O Control

39

I/O issues
• Initiating an I/O
• Completing an I/O

Interrupts are the basis for asynchronous I/O
• OS initiates I/O
• Device operates independently for rest of machine
• Device sends an interrupt signal to CPU when done
• OS maintains an interrupt vector tables (IVT)
• CPU looks up IVT by interrupt number, context switches to rountine

Event: Interrupt vs. Exceptions

40

Two kinds of events, interrupts and exceptions

Interrupts are caused by an external event (asynchronous)
• Device finishes I/O, timer expires, etc.

Exceptions are caused by executing instructions (synchronous)
• X86 int instruction, page fault, divide by zero, etc.
• A deliberate exception is a “trap”, while unexpected exception is a “fault”
• CPU requires software intervention to handle a fault or trap

Deliberate Exception: Trap

41

A trap is an intentional software-generated exception
• the main mechanism for programs to interact with the OS
• On x86, programs use the int instruction to cause a trap
• On ARM, SVC instruction

Handler for trap is defined in interrupt vector table
• Kernel chooses one vector for representing system call trap
• e.g., int $0x80 is used to in Linux to make system calls
• Pintos uses int $0x30 for system call trap

System Call Trap

42

For a user program to “call” OS service
• Known as crossing the protection boundary or protected control transfer

The system call instruction
• Causes an exception, which vectors to a kernel handler
• Passes a parameter determining the system routine to call

• Saves caller state(PC, regs, mode) so it can be restored
• Returning from system call restores this state

Requires architectural support to:
• Restore saved state, reset mode, resume execution

movl $20, %eax # Get PID of current process

int $0x80 # Invoke system call!

Now %eax holds the PID of the current process

#include <fcntl.h>
int main() {
 int fd = open(“ec440.txt”);
 return 0;
}

System Call: Workflow

43

Put code for open in register
Trap to kernel

Kernel mode

User mode

User program

Stand C Library

syscall_table sys_open()

Return to caller

System Call

44

Kernel mode

User mode

Chrome: read()

Trap handler

Trap to

kernel mode,

save state

read() kernel routine

Find read

handler in

vector table

• Restore state,

• Return to user level

• resume execution

LINUX System Call Quick Reference

45

Any Questions about System Call

46

What would happen if the kernel did not save state?

What if the kernel executes a system call?

How to reference kernel objects as arguments or results to/from
syscalls?

• A naming issue
• Use integer object handles or descriptors

o E.g. Unix file descriptors, Windows, HANDLEs
o Only meaningful as parameters to other system calls

Unexpected Exception: Faults

47

Hardware detects and reports “exceptional” conditions
• Page fault, unaligned access, divide by zero

Upon exception, hardware “faults” (verb)
• Must save state(PC, regs, mode, etc.) so that the faulting process can be

restarted

Faults are not necessarily “bad”
• Modern Oses uses virtual memory faults for many function

o Debugging, end-of-stack, garbage collection, copy-on-write

Fault exceptions are essentially a performance optimization

Handling Faults

48

Some faults are handled by “fixing”…
• “Fix” the exceptional condition and return to the faulting context
• Page faults cause the OS to place the missing page into memory
• Fault handler resets pc to re-execute instruction that caused the fault

Some fault are handled by notifying the process
• Fault handler changes the saved context to transfer control to a user

model handler
• Handler must be registered with OS
• Unix signals or Win user-mode Async Procedure Calls (APCs)

Handling Faults (2)

49

Kernel may handle unrecoverable faults by killing the process
• Program fault with no registered handler
• Halt process, write process state to file, destroy process
• In Unix, the default action for many signals (e.g. SIGSEGV)

What about faults in the kernel?
• Dereference NULL, divide by zero, undefined instruction
• These faults considered fatal, operating system crashes
• Unix panic, Windows “Blue screen of death”

o Kernel is halted, state dumped to a core file, machine locked up

Types of Arch Support

50

What architectural feature that directly support the OS?
• Protection(kernel/user mode)
• Protected instructions
• Bootstrapping (Lab 0)
• Memory protection
• System calls
• Interrupts and exceptions
• Timer
• I/O control and operation
• Synchronization

o Interrupt disabling/enabling, atomic instructions

Protection

Handling ”events”

Synchronization

51

Interrupts cause difficult problems
• An interrupt can occur at any time
• A handler can execute that interferes with code that was interrupted

OS must be able to synchronize concurrent execution

Need to guarantee that short instruction sequences execute
atomically

• Disable interrupts – turn off interrupts before sequence, execute
sequence, turn interrupts back on

• Special atomic instructions – read/modify/write a memory address, test
and conditionally set a bit based upon previous value

Summary

52

Protection
• User/kernel modes
• Protected instructions

Interrupts
• Timer, I/O

System calls
• Used by user-level processes to access OS functions

Exceptions
• Unexpected event during execution

Unexpected Deliberate

Exceptions (sync) fault syscall trap

Interrupts (async) interrupt Software interrupt

Next Time..

53

Read Chapters 4-6 (Processes)

Lab0

	Slide 1: Lecture 2: Architectural Support Fall 2025
	Slide 2: Administrivia
	Slide 3: Recap: What is an Operating System
	Slide 4: Recap: OS and Applications
	Slide 5: How about A World of Anarchy?
	Slide 6: A Solution
	Slide 7: Typical OS Structure
	Slide 8: System Calls
	Slide 9: System Call: An Example
	Slide 10: More about System Calls
	Slide 11: How to Manipulate Privileged Machine State?
	Slide 12: H/W Support: Dual-Model Operation in CPU
	Slide 13: A Simple Model of a CPU
	Slide 14: A CPU with Dual-Mode Operation
	Slide 15: Protected Instruction
	Slide 16: An Example of Protected Instruction
	Slide 17: Beyond Dual-Mode Operations
	Slide 18: Why Hardware Support?
	Slide 19: Architectural Feature for OS
	Slide 20: Architectural Feature for OS
	Slide 21: Memory Protection
	Slide 22: Simple Memory Protection
	Slide 23: Solution: Virtual Address
	Slide 24: Types of Arch Support
	Slide 25: Events
	Slide 26: OS Execution
	Slide 27: Workflow of OS Execution Flow
	Slide 28: Event: Interrupt vs. Exceptions
	Slide 29: Interrupts
	Slide 30: How about Polling?
	Slide 31: Give Each Device a Wire
	Slide 32: A Better Solution: Interrupt Controller
	Slide 33: The Interrupt Controller
	Slide 34: Software Interface: Interrupt Vector Table
	Slide 35: Software Interface: Interrupt Vector Table
	Slide 36: Example: Press a Keyboard
	Slide 37: Interrupt Use Case 1: Timers
	Slide 38: Timer in Pintos
	Slide 39: Interrupt Use Case 2: I/O Control
	Slide 40: Event: Interrupt vs. Exceptions
	Slide 41: Deliberate Exception: Trap
	Slide 42: System Call Trap
	Slide 43: System Call: Workflow
	Slide 44: System Call
	Slide 45: LINUX System Call Quick Reference
	Slide 46: Any Questions about System Call
	Slide 47: Unexpected Exception: Faults
	Slide 48: Handling Faults
	Slide 49: Handling Faults (2)
	Slide 50: Types of Arch Support
	Slide 51: Synchronization
	Slide 52: Summary
	Slide 53: Next Time..

