
Lecture 3: Processes

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Recap: Architecture Support for OS

2

Provide protection
• CPU protection: dual-mode operation, protected instructions
• Memory protection: MMU, virtual address

Generating and handling “events”
• Interrupt, syscall, trap
• Interrupt controller, IVT
• Fix fault vs. notify proceed

Mechanisms to handle concurrency
• Interrupts, atomic instructions

Unexpected Deliberate

Exceptions (sync) fault syscall trap

Interrupts (async) interrupt Software interrupt

Today’s Topic

3

Today’s topic are processes and process management
• What is processes?
• How are processes represented in the OS?
• How is processes scheduled in the CPU?
• What are the possible execution states of a process?
• How does a process move from one state to another?

Operating system

Bus

File
System

Keyboard
controller

MemoryCPU
MMU

OS abstraction?

Process Abstraction

4

The process is the OS abstraction for CPU (execution)
• It is the unit of execution
• It is the unit of scheduling
• It is the dynamic execution context of a program
• Sometimes also called a job or a task

Processes vs. Program

5

Program
• Static object existing in a file
• A sequence of instruction
• Static existence in space & time
• Same program can be executed by
• different processes

int main() {
 int i, prod = 1;
 for (i=0;i<100;i++)
 prod = prod * i;
}

Process
• Dynamic object – program in execution
• A sequence of instruction executions
• Exists in limited span of time
• Same process may execute different program

Process Abstraction

6

The process is the OS abstraction for CPU (execution)
• CPU protection: dual-mode operation, protected instructions
• Memory protection: MMU, virtual address

A process is a program in execution
• It defines the sequential, instruction-at-a-time execution of a program
• Programs are static entities with the potential for execution

Single Process: One-at-a-time

7

circa 1960s

human I/O CPU I/O human I/O CPU

Simple Process Management

8

Uniprogramming: a process runs from start to full completion
• What the early batch operating system does
• Load a job from disk (tape) into memory, execute it, unload the job
• Problem: low utilization of hardware

o an I/O-intensive process would spend most of its time waiting for punched cards
to be read

o CPU is wasted
o computers were very expensive back then

human I/O CPU I/O human I/O CPU

Multiple Processes

9

Modern Oses run multiple processes simultaneously

Multiple Processes

10

Modern Oses run multiple processes simultaneously

Examples (can all run simultaneously):
• gcc file_A.c– compiler running on file A
• gcc file_B.c– compiler running on file B
• vim– text editor
• firefox– web browser

Multiprogramming (Multitasking)

11

Multiprogramming: run more than one process at a time
• Multiple processes loaded in memory and available to run
• If a process is blocked in I/O, select another process to run on CPU
• Different hardware components utilized by different tasks at the same

time

Why multiple processes (multiprogramming)?
• Advantages: increase utilization & speed
• higher throughput
• lower latency

Increased Utilization

12

Multiple processes can increase CPU utilization
• Overlap one process’s computation with another’s wait

vim

gcc
Wait for input Wait for input

Multiple processes can reduce latency
• Running A then B requires 100 second for B to complete

A
80s

B
20s

• Running A then B concurrently makes B finish faster
A

B

• < 100 second if both A and B are not completely CPU-bound

How to Implement Multiple Processors?

13

vim GCC

Chrome iTunes

Pick me! Pick me!

Pick me!Pick me! OS CPU

How to Implement Multiple Processors?

14

vim

GCC

Chrome

iTunes
CPU

Multiplex in time!

Each virtual “CPU” needs a structure to hold:
• Program Counter (PC), Stack Pointer (SP)
• Registers

How switch from one virtual CPU to the next?
• Save PC, SP, and registers in current state block
• Load PC, SP, and registers from new state block

vCPU1

vCPU2

vCPU3

vCPU4

vCPU1 vCPU2 vCPU3 vCPU4vCPU1

Time

OS

15

Processes in Kernel’s View

Process Components

16

A process contains all state for a program in execution
• An address space
• The code for the executing program
• The data for the executing program
• An execution stack encapsulating the state of procedure calls
• The program counter (PC) indicating the next instruction
• A set of general-purpose registers with current values
• A set of operating system resources

o Open files, network connections, etc.

Process Address Space

17

Stack

Heap
(Dynamic Memory Allocation)

Static Data
(Data Segment)

Code
(Text Segment)

SP

0X00000000 PC

0XFFFFFFFF

Address
Space

A Process’s View of the World

18

Each process has own view of machine
• Its own address space
• Its own virtual CPU
• Its own open files

*(char *)0xc000 means different thing in P1 & P2

Simplifies programming model
• gcc does not care that chrome is running

Naming A Process

19

The process is named using its process ID (PID)

Inter-Process Communication (IPC)

20

Sometimes want interaction between processes
• Simplest is through files: vim edits file, gcc compiles it
• More complicated: Shell/command, Window manager/app

How can processes interact in real time?

Inter-Process Communication (IPC)

21

How can processes interact in real time?
• (a) By passing messages through the kernel
• (b) By sharing a region of physical memory
• (c) Through asynchronous signals or alerts

Process B

Kernel

Process A

(a)

M

M Kernel

Process A

Process B

(b)

M

SharedM

Kernel

Process A

Process B

(c)

M

Implementing Process

22

A data structure for each process: Process Control Block (PCB)
• Contains all the info about a process

Tracks state of the process
• Running, ready (runnable), waiting, etc.

Process ID
Process state

Program counter

PCB

Registers
Address space

Open files

Implementing Process

23

PCB includes information necessary for execution
• Registers, virtual memory mappings, open files, etc.
• PCB is also maintained when the process is not running (why?)

Various other data about the process
• Credentials (user/group ID), signal mask, priority, accounting, etc

Process is a heavyweight abstraction! Process ID
Process state

Program counter

PCB

Registers
Address space

Open files

Struct proc (Solaris)

24

Struct proc (Solaris) (2)

25

Struct proc (Solaris) (3)

26

Process State

27

A process has an execution state to indicate what it is doing

Running: Executing instructions on the CPU
• It is the process that has control of the CPU
• How many processes can be in the running state simultaneously?

Ready (runnable): Waiting to be assigned to the CPU
• Ready to execute, but another process is executing on the CPU

Waiting: Waiting for an event, e.g., I/O completion
• It cannot make progress until event is signaled (disk completes)

Transition of Process State

28

As a process executes, it moves from state to state
• Unix ps: STAT column indicates execution state
• What state do you think a process is in most of the time?
• How many processes can a system support?

Process State Graph

29

New Ready

Waiting

RunningTerminated

Create
Process

Process
Exit

Schedule
ProcessInterrupt

I/O Done

I/O Wait,
etc

State Queues

30

How does the OS keep track of processes?

Naïve approach: process list
• How to find out processes in the ready state?
• Iterate through the list
• Problem: slow!

Improvement: partition list based on states
• OS maintains a collection of queues that represent the state of all processes
• Typically, one queue for each state: ready, waiting, etc.
• Each PCB is queued on a state queue according to its current state
• As a process changes state, its PCB is moved from one queue into another

State Queues

31

Ready Queue Chrome PCB X Server PCB Idle PCB

Disk I/O Queue Vim PCB Is PCB

Console Queue

Sleep Queue

There may be many wait queues, one for each
type of wait (disk, console, timer, network, etc.)

32

Question ?

Scheduling

33

Which process should kernel run?
• if 0 runnable, run idle loop (or halt CPU), if 1 runnable, run it
• if >1 runnable, must make scheduling decision

Scan process table for first runnable?
• Expensive. Unfairness (small pids do better)

Better Scheduling

34

FIFO?
• Put tasks on back of list, pull them from front:
• Pintos does this—see ready_list in thread.c

Priority?

Discuss in later lecture in detail

head
tail

p1 p2 p3 p4

Preemption

35

When to trigger a process scheduling decision?
• Yield control of CPU
• voluntarily, e.g., sched_yield
• system call, page fault, illegal instruction, etc.
• Preemption

Periodic timer interrupt
• If running process used up quantum, schedule another

Device interrupt
• Disk request completed, or packet arrived on network
• Previously waiting process becomes runnable

Preemption → Context Switch

36

Changing running process is called a context switch
• CPU hardware state is changed from one to another
• This can happen 100 or 1000 times a second!

Context Switch

37

Process 𝑝0 Operating System Process 𝑝1

executing

executing

idle

idle

Interrupt or system call

save state into PCB0

reload state from PCB1

Interrupt or system call

reload state from PCB0

save state into PCB1

idle

Context Switch Details

38

Very machine dependent. Typical things include:
• Save program counter and integer registers (always)
• Save floating point or other special registers
• Save condition codes
• Change virtual address translations

Non-negligible cost
• Save/restore floating point registers expensive

o Optimization: only save if process used floating point
• May require flushing TLB (memory translation hardware)

Usually causes more cache misses (switch working sets)

39

Question ?

40

How to use processes?

Process-Related System Calls

41

Allow a program to create a child process

Creating a Process

42

A process is created by another process
• Parent is creator, child is created (Unix: ps “PPID” field)
• What creates the first process (Unix: init (PID 0 or 1))?

Parent defines resources and privileges for its children
• Unix: Process User ID is inherited – children of your shell execute with

your privileges

After creating a child
• The parent may either wait for it to finish its task or continue in parallel

Creating Process in Windows

43

The system call on Windows for creating a process is called,
surprisingly enough, CreateProcess:

BOOL CreateProcess(char *prog, char *args) (simplified)

CreateProcess:
1. Create and initializes a new PCB
2. Creates and initializes a new address space
3. Loads the program specified by “prog” into the address space
4. Copies “args” into memory allocated in address space
5. Initializes the saved hardware context to start execution at main (or as
6. specified)
7. Places the PCB on the ready queue

CreateProcess Function

44

Creating Process in Unix

45

In Unix, processes are created using fork()

int fork()
1. Creates and initializes a new PCB
2. Creates a new address space
3. Initializes the address space with a copy of the address space of the parent
4. Initializes the kernel resources to point to the parent’s resources (e.g., open

files)
5. Places the PCB on the ready queue

Fork returns twice
- Huh?
- Returns the child’s PID to the parent, “0” to the child

Fork

46

Fork()

47

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
 char *name = argv[0];
 int child_pid = fork();
 if (child_pid == 0) {
 printf("Child of %s is %d\n", name, getpid());
 return 0;
 } else {
 printf("My child is %d\n", child_pid);
 return 0;
 }
}

What does the program prints?

Example Output

48

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])
{
 char *name = argv[0];
 int child_pid = fork();
 if (child_pid == 0) {
 printf("Child of %s is %d\n", name, getpid());
 return 0;
 } else {
 printf("My child is %d\n", child_pid);
 return 0;
 }
}

What does the program prints?

Process Summary

49

What are the units of execution?
• Processes

How are those units of execution represented?
• Process Control Blocks (PCBs)

How is work scheduled in the CPU?
• Process states, process queues, context switches

What are the possible execution states of a process?
• Running, ready, waiting

How are processes created?
• CreateProcess (NT), fork/exec (Unix)

Next time…

50

Read Chapters 26, 27

	Slide 1: Lecture 3: Processes Fall 2025
	Slide 2: Recap: Architecture Support for OS
	Slide 3: Today’s Topic
	Slide 4: Process Abstraction
	Slide 5: Processes vs. Program
	Slide 6: Process Abstraction
	Slide 7: Single Process: One-at-a-time
	Slide 8: Simple Process Management
	Slide 9: Multiple Processes
	Slide 10: Multiple Processes
	Slide 11: Multiprogramming (Multitasking)
	Slide 12: Increased Utilization
	Slide 13: How to Implement Multiple Processors?
	Slide 14: How to Implement Multiple Processors?
	Slide 15
	Slide 16: Process Components
	Slide 17: Process Address Space
	Slide 18: A Process’s View of the World
	Slide 19: Naming A Process
	Slide 20: Inter-Process Communication (IPC)
	Slide 21: Inter-Process Communication (IPC)
	Slide 22: Implementing Process
	Slide 23: Implementing Process
	Slide 24: Struct proc (Solaris)
	Slide 25: Struct proc (Solaris) (2)
	Slide 26: Struct proc (Solaris) (3)
	Slide 27: Process State
	Slide 28: Transition of Process State
	Slide 29: Process State Graph
	Slide 30: State Queues
	Slide 31: State Queues
	Slide 32
	Slide 33: Scheduling
	Slide 34: Better Scheduling
	Slide 35: Preemption
	Slide 36: Preemption goes to Context Switch
	Slide 37: Context Switch
	Slide 38: Context Switch Details
	Slide 39
	Slide 40
	Slide 41: Process-Related System Calls
	Slide 42: Creating a Process
	Slide 43: Creating Process in Windows
	Slide 44: CreateProcess Function
	Slide 45: Creating Process in Unix
	Slide 46: Fork
	Slide 47: Fork()
	Slide 48: Example Output
	Slide 49: Process Summary
	Slide 50: Next time…

