CE 440 Introduction to Operating System

Lecture 3: Processes
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Recap: Architecture Support for OS

Provide protection

Generating and handling “events”

nterrupt, syscall, trap
nterrupt controller, IVT

Fix fault vs. notify proceed

CPU protection: dual-mode operation, protected instructions
Memory protection: MMU, virtual address

Unexpected Deliberate
Exceptions (sync) fault syscall trap
Interrupts (async) interrupt Software interrupt

Mechanisms to handle concurrency

Interrupts, atomic instructions

OS abstraction? {

What is processes?

Today’s Topic

Today’s topic are processes and process management

How are processes represented in the OS?
How is processes scheduled in the CPU?

What are the possible execution states of a process?
How does a process move from one state to another?

-

Operating systerh

CPU
MMU

=)l

Keyboard
controller

_

File
System

Bus /

Process Abstraction

The process is the OS abstraction for CPU (execution)
* [tisthe unit of execution
* |tisthe unit of scheduling
* Itisthe dynamic execution context of a program
e Sometimes also called a job or a task

Processes vs. Program

int main() {
int i, prod = 1; (e
for (i=0;i<100;i++) <
prod = prod * i; (e —

Program Process

Static object existing in a file » Dynamic object — program in execution
A sequence of instruction A sequence of instruction executions
Static existence in space & time Exists in limited span of time

Same program can be executed by * Same process may execute different program
different processes

Process Abstraction

The process is the OS abstraction for CPU (execution)

* CPU protection: dual-mode operation, protected instructions
* Memory protection: MMU, virtual address

A process is a program in execution
* |tdefines the sequential, instruction-at-a-time execution of a program
* Programs are static entities with the potential for execution

Single Process: One-at-a-time

Tape System
drive Input tape Output
tape tape

circa 1960s

1401

7094

(a) (b) (c) (d)

humanl!l/O CPU /0 humanl!l/O CPU
— i e e e

Simple Process Management

human I/O CPU /0 human I/0 CPU

. . - > s

Uniprogramming: a process runs from start to full completion
* What the early batch operating system does
* Loadajob from disk (tape) into memory, execute it, unload the job

* Problem: low utilization of hardware

o anl/O-intensive process would spend most of its time waiting for punched cards
to be read

o CPUiswasted

O computers were very expensive back then

Multiple Processes

Modern Oses run multiple processes simultaneously

1
1
1
1
1
1
1
1
1
1
1
1
1
1
4
1
1

o r

= L

e N 8 I]

[T =

- 1

® Activity Monitor
. Applications in last 1

Activity Moniter
Messages
Finder

Preview
TextEdit

Safari

Music

Photos

™

FaceTime
Stickies

App Store
System Preferences
Mail

Notes

Maps

Podcasts

Spotlight

App Name

@ v

CPU Memory Energy Disk Network

Energy Imp

Remaining charge:
Time remaining:

Time on battery:

1n.3
51
a7
0.0
0.0
0.0
04
0.0
0
0.0
0.0
01
0.0
0.0
0.0
0.0
0.0
0.0

B8%
7:35
20:38

12 hr Power

5.8

0.28
0.15
2.22
0.15
0.04
014
0.28
0.03
0.08
0.16
0.60
0.06
0.33
0.08

A
L
App Nap

Nao

No

Preventing Sle

User

dannyrico
dannyrico
dannyrice
dannyrico
dannyrico
dannyrico
dannyrico
dannyrico
dannyrico
dannyrico
dannyrico
dannyrice
dannyrico
dannyrico
dannyrico
dannyrico

dannyrice

Multiple Processes

Modern Oses run multiple processes simultaneously

Examples (can all run simultaneously):
* gccfile_A.c—compiler running on file A
 gccfile_B.c—compiler running on file B
* vim-text editor
* firefox—web browser

10

Multiprogramming (Multitasking)

Multiprogramming: run more than one process at a time
* Multiple processes loaded in memory and available to run
* |faprocessisblockedinl/O, select another processto runon CPU
 Different hardware components utilized by different tasks at the same
time

Why multiple processes (multiprogramming)?
* Advantages: increase utilization & speed
* higher throughput
* lower latency

11

Increased Utilization

Multiple processes can increase CPU utilization
 QOverlap one process’s computation with another’s wait

vim = Wait forinput = Wait for input

gce >

Multiple processes can reduce latency

* Running Athen B requires 100 second for B to complete

80s 20s
A > B ——

* Running Athen B concurrently makes B finish faster

B — —

e <100secondif both A and B are not completely CPU-bound

12

How to Implement Multiple Processors?

...

Chrome iTunes | : :
l Pick me! I l Pick me! I 0OS CPU

..

13

How to Implement Multiple Processors?

..

GCC vCPU2 vCPU1 vCPU2 vCPU3 VvCPU1 vCPU4
Chrome vCPU3 Time >
iTunes vCPU4

... OS CPU
Multiplexin tlme'

Each virtual “CPU” needs a structure to hold:
* Program Counter (PC), Stack Pointer (SP)
* Registers

How switch from one virtual CPU to the next?
« Save PC, SP, and registers in current state block
* LoadPC, SP, and registers from new state block 14

Processes in Kernel’s View

15

Process Components

A process contains all state for a program in execution
* An address space
* The code for the executing program
* The data for the executing program
* An execution stack encapsulating the state of procedure calls
* The program counter (PC) indicating the next instruction
* Asetofgeneral-purpose registers with current values

* Asetof operating system resources
o Open files, network connections, etc.

16

Process Address Space

OXFFFFFFFF

A

Address

Space Heap
(Dynamic Memory Allocation)

Static Data
(Data Segment)

\ 4

0X00000000

A Process’s View of the World

Each process has own view of machine
* |tsown address space
* Its own virtual CPU
* Jtsown open files

*(char *)0xc000 means different thingin P1 & P2

Simplifies programming model
 gcc does not care that chrome is running

18

Naming A Process

The process is named using its process ID (PID)

M Buf, 1842M

SERNAME THR PRI NIC
1 52 8

n L
[

1
1
1
1
1
1
1
1
1
1
1
1
1
4
1
1

19

Inter-Process Communication (IPC)

Sometimes want interaction between processes

 Simplestisthrough files: vim edits file, gcc compiles it
* More complicated: Shell/command, Window manager/app

How can processes interact in real time?

20

Inter-Process Communication (IPC)

Process A| M Process A| M :I ProcessA| M p—
ProcessB| M [« Shared Process B —
Process B :I
Kernel M [Kernel Kernel

(a) (b) (c)
How can processes interact in real time?
* (a)Bypassing messages through the kernel
* (b) By sharing a region of physical memory
* (c) Through asynchronous signals or alerts

21

Implementing Process

A data structure for each process: Process Control Block (PCB)
* Contains all the info about a process

Process state
Process ID

Program counter

Tracks state of the process

* Running, ready (runnable), waiting, etc. Registers

Address space

Open files
PCB

22

Implementing Process

PCB includes information necessary for execution

* Registers, virtual memory mappings, open files, etc.
* PCB is also maintained when the process is not running (why?)

Various other data about the process
* Credentials (user/group ID), signal mask, priority, accounting, etc

Process state

Process is a heavyweight abstraction! Process ID

Program counter

Registers

Address space

Open files

PCB -

* One structure allocated per active process.

Struct proc

It contains all

* data needed about the process while the process may be swapped

Other per-process data (user.h) is also inside the proc structure.

* Lightweight-process data (lwp.h) and the kernel stack may be swapped out.

* out.
*/
typedef struct proc {
/*
* Fields requiring no explicit
*/
struct vnode *p exec;
struct as *p as;

struct plock *p lockp;
kmutex t p crlock;

struct cred *p_cred;
7 *
* Fields protected by pidlock
*/
int p_swapcnt;
char p stat;
char p_wcode;
ushort t p pidflag;
int p wdata;
pid t p_ppid;
struct proc *p link;
struct proc *p parent;
struct proc *p child;
struct proc *p sibling;

struct proc
struct proc
struct proc
struct proc
struct proc
struct proc
struct proc
struct proc

*p psibling;
*p sibling ns;
*p child ns;
*p_next;
*p_prev;

*p nextofkin;
*p orphan;

*p nextorph;

locking

/*
/*
/*
/*
/*

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*

pointer to a.out vnode */

process address space pointer */
ptr to proc struct's mutex lock */
lock for p cred */

process credentials */

number of swapped out lwps */

status of process */

current wait code */

flags protected only by pidlock */
current wait return value */

process id of parent */

forward link */

ptr to parent process */

ptr to first child process */

ptr to next sibling proc on chain */
ptr to prev sibling proc on chain */
prt to siblings with new state */
prt to children with new state */
active chain link next */

active chain link prev */

gets accounting info at exit */

(Solaris)

*p pglink;
struct proc *p ppglink;
struct sess *p_sessp;
struct pid *p pidp;
struct pid *p pgidp;
/*
* Fields protected by p lock
*/

kcondvar t p cv;

kcondvar t p flag cv;
kcondvar_t p_lwpexit;
kcondvar t p holdlwps;

ushort t p padl;
uint t p flag;

/* flags defined below */
clock_t p_utime;

clock t p stime;

clock t p cutime;

clock t p cstime;

caddr t *p segacct;
caddr t p brkbase;

size_ t p_brksize;

/*
* Per process signal stuff.
*/

k sigset t p sig;

k sigset t p ignore;

k sigset t p siginfo;

struct sigqueue *p sigqueue;
struct sigghdr *p sigghdr;
struct sigghdr *p signhdr;
uchar_t p_stopsig;

[*
/*®
VS
[*

/*®

[*
VS
[*
[*
/*®

/*®
[*
VS
VS
VS
/*®
/*®

VS
/*®
VS
VS
VS
VS
/*®

/* process group hash chain link next */

process group hash chain link prev */
session information */

process ID info */
process group ID info */

proc struct's condition variable */

waiting for some lwp to exit */
process is waiting for its lwps */
to to be held. */

unused */
protected while set. */

user time, this process */
system time, this process */
sum of children's user time */
sum of children's system time */
segment accounting info */

base address of heap */

heap size in bytes */

signals pending to this process */
ignore when generated */

gets signal info with signal */
gqueued siginfo structures */

hdr to sigqueue structure pool */
hdr to signotify structure pool */
jobcontrol stop signal */

Struct proc (Solaris) (2)

* Special per-process flag when set will fix misaligned memory
* references.

*/
char p fixalignment;

/*

* Per process lwp and kernel thread stuff

*/

id t p_lwpid; /* most recently allocated lwpid */
int p_lwpent; /* number of lwps in this process */
int p_lwprent; /* number of not stopped lwps */

int p lwpwait; /* number of lwps in lwp wait() */
int p_zombent; /* number of zombie lwps */

int p_zomb max; /* number of entries in p zomb tid */
id t *p zomb tid; /* array of zombie lwpids */
kthread t *p tlist; /* circular list of threads */

/*

* /proc (process filesystem) debugger interface stuff.
*/

k sigset t p sigmask; /* mask of traced signals (/proc) */

k _fltset t p fltmask; /* mask of traced faults (/proc) */
struct vnode *p trace; /* pointer to primary /proc vnode */
struct vnode *p plist; /* list of /proc vnodes for process */
kthread t *p agenttp; /* thread ptr for /proc agent lwp */
struct watched area *p warea; /* list of watched areas */

ulong t p nwarea; /* number of watched areas */

struct watched page *p wpage; /* remembered watched pages (vfork) */
int p_nwpage; /* number of watched pages (vfork) */
int p _mapent; /* number of active pr mappage()s */
struct proc *p rlink; /* linked list for server */

kcondvar t p srwchan cv;

size t p stksize; /* process stack size in bytes */

/*
* Microstate accounting, resource usage, and real-time profiling
*/

hrtime t p mstart; /* hi-res process start time */
hrtime t p mterm; /* hi-res process termination time */
hrtime t p mlreal; /* elapsed time sum over defunct lwps */
hrtime t p acct[NMSTATES]; /* microstate sum over defunct lwps */
struct lrusage p ru; /* lrusage sum over defunct lwps */
struct itimerval p rprof_ timer; /* ITIMER_REALPROF interval timer */
uintptr t p rprof cyclic; /* ITIMER REALPROF cyclic */

uint_t p_defunct; /* number of defunct lwps */

[*

* profiling. A lock is used in the event of multiple lwp's
* using the same profiling base/size.

*/
kmutex t p pflock; /* protects user profile arguments */
struct prof p prof; /* profile arguments */
[*
* The user structure
*/
struct user p user; /* (see sys/user.h) */
/*
* Doors.
*/
kthread t *p server threads;
struct door node *p door list; /* active doors */
struct door node *p unref list;
kecondvar t p_server cv;
char p_unref thread; /* unref thread created */

/%

* Kernel probes

*/

uchar t

[*
* C2 Security
*/

Struct proc (Solaris) (3)

p tnf flags;

(C2_AUDIT)

caddr t p audit data;

/*

per process audit structure */

kthread t *p aslwptp; /* thread ptr representing "aslwp" */
lefined(i386) || defined(__i386) || defined(__ia64)
I*

£

* LDT support.
*/

kmutex t p ldtlock;
struct seg desc *p 1ldt;
struct seg desc p ldt desc;

int p ldtlimit;

size t p swrss;
struct aio
struct itimer
k sigset t
kcondvar t
timeout id t
uint t

struct vnode
caddr t
uint t
model t

struct lwpchan data

*p aioj;

**p itimer;

p notifsigs;

p notifcv;

p alarmid;

p _sc_unblocked;
*p sc _door;

p usrstack;

p stkprot;

p model;
*p_lcp;

[*

protects the following fields */
Pointer to private LDT */

segment descriptor for private LDT
highest selector used */

resident set size before last swap
pointer to async I/0 struct */
interval timers */

signals in notification set */
notif cv to synchronize with aslwp
alarm's timeout id */

number of unblocked threads */
scheduler activations door */

top of the process stack */

stack memory protection */

data model determined at exec time
lwpchan cache */

*/

*/

*/

S *

* protects unmapping and initilization of robust locks.

*/
kmutex t
utrap handler t

refstr t

#if defined(__ia64)

caddr t
size t
uchar t

#endif

void

struct task

struct proc

struct proc

int

int

kthread t

struct sc data
} proc t;

p_lcp mutexinitlock;

*p utraps;

*p corefile;

p _upstack;
p_upstksize;
p_isa;

*p rce;

*p task;

*p taskprev;
*p tasknext;
p lwpdaemon;
p_lwpdwait;
**p tidhash;
*p schedctl;

J*
[*

pointer to user trap handlers */

pattern for core file */

base of the upward-growing stack */
size of that stack, in bytes */
which instruction set is utilized */

resource control extension data */
our containing task */

ptr to previous process in task */
ptr to next process in task */
number of TP DAEMON lwps */

number of daemons in lwp wait() */
tid (lwpid) lookup hash table */
available schedctl structures */

Process State

A process has an execution state to indicate what it is doing

Running: Executing instructions on the CPU
* |tisthe process that has control of the CPU
* How many processes can be in the running state simultaneously?

Ready (runnable): Waiting to be assighed to the CPU
* Ready to execute, but another process is executing on the CPU

Waiting: Waiting for an event, e.g., I/0 completion
* [tcannot make progress until event is signaled (disk completes)

27

Transition of Process State

As a process executes, it moves from state to state
* Unix ps: STAT column indicates execution state
* What state do you think a process is in most of the time?
e How many processes can a system support?

28

Process State Graph

Create
Process
>
1/0 Done
Schedule
Interrupt
Process
1/0 Wait,
etc
Terminated [
Process

Exit

29

State Queues

How does the OS keep track of processes?

Naive approach: process list
* Howto find out processes in the ready state?

* [terate through the list
* Problem: slow!

Improvement: partition list based on states
* OS maintains a collection of queues that represent the state of all processes

* Typically, one queue for each state: ready, , etc.
* Each PCBis queued on a state queue according to its current state
* As aprocess changes state, its PCB is moved from one queue into another

30

Ready Queue

State Queues

Chrome PCB X Server PCB Idle PCB

Disk 1/0 Queue

Vim PCB Is PCB

Console Queue

There may be many wait queues, one for each
type of wait (disk, console, timer, network, etc.)

31

Question ?

Scheduling

Which process should kernel run?

 if Orunnable, runidle loop (or halt CPU), if 1 runnable, run it
* if>1runnable, must make scheduling decision

Scan process table for first runnable?
* Expensive. Unfairness (small pids do better)

33

Better Scheduling
FIFO?

* Puttasks on back of list, pull them from front:
* Pintos does this—see ready_listin thread.c

pl <=—>| p2 <=——> p3 <> p4

head
tail A

Priority?

Discuss in later lecture in detail

34

Preemption

When to trigger a process scheduling decision?
* Yield control of CPU

* voluntarily, e.g., sched yield

 system call, page fault, illegal instruction, etc.
* Preemption

Periodic timer interrupt
* [f running process used up quantum, schedule another

Device interrupt

* Diskrequest completed, or packet arrived on network
Previously waiting process becomes runnable

35

Preemption — Context Switch

Changing running process is called a context switch
* CPU hardware state is changed from one to another
* This can happen 100 or 1000 times a second!

36

Context Switch

Process pg

Operating System

Interrupt or system call

executing /

save state into PCB,

reload state from PCB;

> idle

Process p4

Interrupt or system call

save state into PCB;

executing ‘ ‘ °
reload state from PCB,

/

~

> idle

> idle

37

Context Switch Details

Very machine dependent. Typical things include:

* Save program counter and integer registers (always)
 Save floating point or other special registers

* Save condition codes

* Change virtual address translations

Non-negligible cost
 Save/restore floating point registers expensive

o Optimization: only save If process used floating point
« May require flushing TLB (memory translation hardware)

Usually causes more cache misses (switch working sets)

38

Question ?

How to use processes?

40

Process-Related System Calls

Allow a program to create a child process

41

Creating a Process

A process is created by another process

* Parentis creator, child is created (Unix: ps “PPID” field)
* What creates the first process (Unix: init (PID 0 or 1))?

Parent defines resources and privileges for its children
* Unix: Process User ID is inherited — children of your shell execute with
your privileges

After creating a child
* The parent may either wait for it to finish its task or continue in parallel

42

Creating Process in Windows

The system call on Windows for creating a process is called,
surprisingly enough, CreateProcess:

BOOL CreateProcess(char *prog, char *args) (simplified)

CreateProcess:
1. Create and initializes a new PCB
Creates and initializes a new address space
Loads the program specified by “prog” into the address space
Copies “args” into memory allocated in address space
Initializes the saved hardware context to start execution at main (or as
specified)
Places the PCB on the ready queue 43

N O kWb

AF At Pl BN AT TR0 RUTRAFII] BN ATt L) = TS Ao | INLG RN Laalll

CreateProcessA function
(processthreadsapi.h)

02408, 2025

Creates a new process and its primary thread. The new process runs in the security context of the

calling process.

If the calling process is impersonating another user, the new process uses the token for the calling
process, not the impersonation token. To run the new process in the security context of the user
represented by the impersonation token, use the CreateProcessAsUserA function or

CreateProcessWithLogonW function,

Syntax

C++

BOOL CreateProcessAl

[in, optionall LPCSTR lpApplicationName,
[in, out, optionall LPSTR 1pCommandLine,

[in, optional] LPSECURITY_ATTRIBUTES lpProcessAttributes,
[in, optionall LPSECURITY_ATTRIBUTES 1lpThreadAttributes,
[in] BOOL bInheritHandles,
[in] DWORD dwCreationFlags,
[in, optional] LPVOID 1pEnvironment,

[in, optionall LPCSTR lpCurrentDirectory,
[in] LPSTARTUPINFOA lpStartuplnfo,

[out] LPPROCESS_INFORMATION lpProcessInformation

1F

Creating Process in Unix

In Unix, processes are created using fork()

int fork()

1. Creates and initializes a new PCB

2. Creates a new address space

3. Initializes the address space with a copy of the address space of the parent

4. Initializes the kernel resources to point to the parent’s resources (e.g., open
files)

5. Places the PCB on the ready queue

Fork returns twice
- Huh?
- Returns the child’s PID to the parent, “0” to the child "

fork{2) System Calls Manual fork(2)

NAME e

fork — create a child process

LIBRARY tap

Standard C library (libc, -1c)

SYNOPSIS top

#include =unistd.h=

pid_t fork(wvoid);

DESCRIPTION top

fork() creates a new process by duplicating the calling process.
The new process is referred to as the child process. The calling
process is referred to as the parent process.

The child process and the parent process run in separate memory
spaces. At the time of ferk() both memory spaces have the same
content. Memory writes, file mappings (mmap(2)), and unmappings

{murmap(2)) performed by one of the processes do not affect the
other.

The child process is an exact duplicate of the parent process
except for the following points:

* The child has its own unique process ID, and this PID does not
match the ID of any existing process group (setpgid(2)) or
session.

* The child's parent process ID is the same as the parent's
process ID.

* The child does not inherit its parent's memory locks (mlock(Z),
mlockalliz)).

* Process resource utilizations (getrusage(2)) and CPU time
counters (times(2)) are reset to zero in the child.

Bitps:ifman? org/lisus mas-pages'man fork. 2 himl Lt

Fork()

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])

{

char *name = argv[O];
int child pid = fork();
if (child pid == 0) {
printf("Child of %s is %d\n", name, getpid());

return 0;

} else {
printf("My child is %d\n", child_pid);
return 09;

47

Example Output

#include <stdio.h>
#include <unistd.h>
int main(int argc, char *argv[])

{

char *name = argv[O];
int child pid = fork();
if (child pid == 0) {
printf("Child of %s is %d\n", name, getpid());

return 0;

} else {
printf("My child is %d\n", child_pid);
return 09;

48

Process Summary

What are the units of execution?
* Processes
How are those units of execution represented?
* Process Control Blocks (PCBs)
How is work scheduled in the CPU?
* Process states, process queues, context switches
What are the possible execution states of a process?
* Running, ready, waiting
How are processes created?
 CreateProcess (NT), fork/exec (Unix)

49

Read Chapters 26, 27

Next time...

50

	Slide 1: Lecture 3: Processes Fall 2025
	Slide 2: Recap: Architecture Support for OS
	Slide 3: Today’s Topic
	Slide 4: Process Abstraction
	Slide 5: Processes vs. Program
	Slide 6: Process Abstraction
	Slide 7: Single Process: One-at-a-time
	Slide 8: Simple Process Management
	Slide 9: Multiple Processes
	Slide 10: Multiple Processes
	Slide 11: Multiprogramming (Multitasking)
	Slide 12: Increased Utilization
	Slide 13: How to Implement Multiple Processors?
	Slide 14: How to Implement Multiple Processors?
	Slide 15
	Slide 16: Process Components
	Slide 17: Process Address Space
	Slide 18: A Process’s View of the World
	Slide 19: Naming A Process
	Slide 20: Inter-Process Communication (IPC)
	Slide 21: Inter-Process Communication (IPC)
	Slide 22: Implementing Process
	Slide 23: Implementing Process
	Slide 24: Struct proc (Solaris)
	Slide 25: Struct proc (Solaris) (2)
	Slide 26: Struct proc (Solaris) (3)
	Slide 27: Process State
	Slide 28: Transition of Process State
	Slide 29: Process State Graph
	Slide 30: State Queues
	Slide 31: State Queues
	Slide 32
	Slide 33: Scheduling
	Slide 34: Better Scheduling
	Slide 35: Preemption
	Slide 36: Preemption goes to Context Switch
	Slide 37: Context Switch
	Slide 38: Context Switch Details
	Slide 39
	Slide 40
	Slide 41: Process-Related System Calls
	Slide 42: Creating a Process
	Slide 43: Creating Process in Windows
	Slide 44: CreateProcess Function
	Slide 45: Creating Process in Unix
	Slide 46: Fork
	Slide 47: Fork()
	Slide 48: Example Output
	Slide 49: Process Summary
	Slide 50: Next time…

