
Lecture 4: Thread

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Recap: Process Creation

2

int fork()
1. Creates and initializes a new PCB
2. Creates a new address space
3. Initializes the address space with a copy of the address space of the parent
4. Initializes the kernel resources to point to the parent’s resources (e.g., open

files)
5. Places the PCB on the ready queue

Fork returns twice
• Huh?
• Returns the child’s PID to the parent, “0” to the child

Divergence

3

PC

child_pid = fork();
if (child_pid == 0) {
 printf("child");
} else {
 printf("parent");
}

child_pid = 486

PC

child_pid = fork();
if (child_pid == 0) {
 printf("child");
} else {
 printf("parent");
}

child_pid = 0

Parent Child

Process Creation: Unix (2)

4

Wait a second. How do we actually start a new program?
int execv(char *prog, char *argv[])

int execve(const char *filename, char *const argv[], char *const envp[])

execv()

1. Stops the current process
2. Loads the program “prog” into the process’ address space
3. Initializes hardware context and args for the new program
4. Places the PCB onto the ready queue
• Note: It does not create a new process

What does it mean for exec to return?

Warning: Pintos exec more like combined fork/exec

Why fork()?

5

Most calls to fork followed by exec
• could also combine into one spawn system call

Very useful when the child…
• Is cooperating with the parent
• Relies upon the parent’s data to accomplish its task

Example: Web Server

6

while (1) {
 int sock = accept();
 if ((child_pid = fork()) == 0) {
 // Handle client request
 } else {
 // Close socket
 }
}

Example: Shell

7

https://yigonghu.github.io/_pages/ec440/fall25/code/minish.c

pid_t pid; char **av;
void doexec () {

execvp (av[0], av);
perror (av[0]);
exit (1);

}
/* ... main loop: */
for (;;) {

parse_next_line_of_input (&av, stdin);
switch (pid = fork ()) {
case -1:
perror ("fork"); break;
case 0:
doexec ();
default:
waitpid (pid, NULL, 0);
break;
}

}

https://yigonghu.github.io/_pages/ec440/fall25/code/minish.c

Why fork()?

8

Most calls to fork followed by exec
• could also combine into one spawn system call

Very useful when the child…
• Is cooperating with the parent
• Relies upon the parent’s data to accomplish its task

Real win is simplicity of interface
• Tons of things you might want to do to child:

o manipulate file descriptors, set environment variables, reduce privileges, ...
• Yet fork requires no arguments at all

Example: redirect

9

void doexec (void) {
int fd;
if (infile) {/* non-NULL for "command < infile" */

if ((fd = open (infile, O_RDONLY)) < 0) {
perror (infile);
exit (1);

}
if (fd != 0) {

dup2 (fd, 0);
close (fd);

}
}

execvp (av[0], av);
perror (av[0]);
exit (1);

}

https://yigonghu.github.io/_pages/ec440/fall25/code/redirsh.c

https://yigonghu.github.io/_pages/ec440/fall25/code/redirsh.c

Spawning a Process Without fork?

10

Without fork, needs tons of different options for new process
• Example: Windows CreateProcess system call
• Also CreateProcessAsUser, CreateProcessWithLogonW,

CreateProcessWithTokenW, ...

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR lpApplicationName,
_Inout_opt_ LPTSTR lpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes,
_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,
In BOOL bInheritHandles,
In DWORD dwCreationFlags,
_In_opt_ LPVOID lpEnvironment,
_In_opt_ LPCTSTR lpCurrentDirectory,
In LPSTARTUPINFO lpStartupInfo,
Out LPPROCESS_INFORMATION lpProcessInformation

);

Questions

11

Why Windows use CreateProcess while Unix uses fork/exec?
• different OS design philosophy

What happens if you run “exec csh” in your shell?

What happens if you run “exec ls” in your shell? Try it.

fork() can return an error. Why might this happen?

Process Termination

12

All good processes must come to an end. But how?
• Unix: exit(int status), Windows: ExitProcess(int status)

Essentially, free resources and terminate
1. Terminate all threads (next lecture)
2. Close open files, network connections
3. Allocated memory (and VM pages out on disk)
4. Remove PCB from kernel data structures, delete

Note that a process does not need to clean up itself
• Why does the OS have to do it?

wait() a second…

13

Often it is convenient to pause until a child process has finished
• Think of executing commands in a shell

Unix wait(int *wstatus) (Windows: WaitForSingleObject)
• Suspends the current process until any child process ends
• waitpid() suspends until the specified child process ends

wait() has a return value…what is it?

Unix: Every process must be “reaped” by a parent
• What happens if a parent process exits before a child?
• What do you think a “zombie” process is?

Problem with Process

14

Creating a new process is costly
• all of the data structures that must be allocated and initialized
• recall struct proc in Solaris

Communicating between processes is also costly
• because most communication goes through the OS
• overhead of system calls and copying data

Problem with fork()

15

forks off copies of itself

To execute these programs we need to
• Create several processes that execute in parallel
• Cause each to map to the same address space to share data
• They are all part of the same computation
• Have the OS schedule these processes in parallel (logically or physically)

This situation is very inefficient
• Space: PCB, page tables, etc.
• Time: create data structures, fork and copy addr space, etc.

Rethinking Process

16

What is similar in these cooperating processes?
• They all share the same code and data (address space)
• They all share the same privileges
• They all share the same resources (files, sockets, etc.)

What don’t they share?
• Each has its own execution state: PC, SP, and registers

Stack

Heap
(Dynamic Memory Allocation)

Static Data
(Data Segment)

Code
(Text Segment)

SP

0X00000000 PC

0XFFFFFFFF

Address
Space

Rethinking Process

17

Idea: Why not separate the process concept from its execution
state?

• Process: address space, privileges, resources, etc.
• Execution state: PC, SP, registers

Exec state also called thread of control, or thread

Threads

18

Modern OSes separate the concepts of processes and threads
• The thread defines a sequential execution stream within a process (PC, SP, registers)
• The process defines the address space and general process attributes

A thread is bound to a single process
• Processes, however, can have multiple threads

Threads become the unit of scheduling
• Processes are now the containers in which threads execute
• Processes become static, threads are the dynamic entities

Data structure: Thread Control Block (TCB)

Small and Fast…

19

Pintos thread class
struct thread {

tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all
threads list. */
struct list_elem elem; /* List element. */
unsigned magic; /* Detects stack overflow. */

};

Threads in a Process

20

code data file

registers stack

Single-threaded process

thread
thread

registers

stack

registers

stack

code data file

registers

stack

Multithreaded process

Where is heap?

Thread address space

21

Heap

Static Data

Code

SP

PC

Stack (Thread 1)

Stack (Thread 2)

Stack (Thread 3)

Code

Code

SP

SPThread 2

PC

Thread 1

Thread 3

PC

Process/Thread Separation

22

Easier to support multithreaded applications
• Concurrency does not require creating new processes

Concurrency (multithreading) can be very useful
• Improving program structure
• Allowing one process to use multiple CPUs/cores
• Handling concurrent events (e.g., Web requests)
• Allowing program to overlap I/O and computation

So multithreading is even useful on a uniprocessor
• Although today even cell phones are multicore

But, brings a whole new meaning to Spaghetti Code
• Forcing OS students to learn about synchronization…

Recall fork

23

fork() to create new processes to handle requests is overkill

Recall our forking Web server:
while (1) {

int sock = accept();
if ((child_pid = fork()) == 0) {

// Handle client request
// Close socket and exit

} else {
// Close socket

}
}

Threads: Concurrent Servers

24

Instead, we can create a new thread for each request

web_server() {
while (1) {

int sock = accept();
thread_fork(handle_request, sock);

}
}

handle_request(int sock) {
Process request
close(sock);

}

Thread Primitives

25

tid thread_create (void (*fn) (void *), void *);
• Create a new thread, run fn with arg
• Allocate Thread Control Block (TCB)
• Allocate stack
• Build stack frame for base of stack
• Put func, args on stack
• Put thread on ready list

void thread_exit ();
• Destroy current thread

void thread_join (tid thread);
• Wait for thread thread to exit

Thread Implementation

26

Threads can be implemented in kernel

k k k k k

The OS schedules all the threads in the system

Also known as lightweight processes
• Windows: threads
• Solaris: lightweight processes (LWP)
• POSIX Threads (pthreads): PTHREAD_SCOPE_SYSTEM

User thread

Kernel thread

Limitations of Kernel Thread

27

Every thread operation must go through kernel
• create, exit, join, synchronize, or switch for any reason
• On my laptop: syscall takes 100 cycles, function call 5 cycles
• Result: threads 10x-30x slower when implemented in kernel

One-size fits all thread implementation
• Kernel threads must please all people
• Maybe pay for fancy features (priority, etc.) you don’t need

General heavy-weight memory requirements
• e.g., requires a fixed-size stack within kernel
• other data structures designed for heavier-weight processes

Alternative: User-Level Threads

28

Implement as user-level library (a.k.a. green threads)
• One kernel thread per process
• thread_create, thread_exit, etc., just library functions
• library does thread context switch

User-level threads are small and fast
• pthreads: PTHREAD_SCOPE_PROCESS
• Java: Thread

k

User thread

Kernel thread

Limitation of User-level Threads

29

Can’t take advantage of multiple CPUs or cores

User-level threads are invisible to the OS
• They are not well integrated with the OS

As a result, the OS can make poor decisions
• Scheduling a process with idle threads
• A blocking system call (e.g., disk read) blocks all threads

o Even if the process has other threads that can execute
• Unscheduling a process with a thread holding a lock

How to solve this?

Kernel and User Threads

30

Use both kernel and user-level threads
• Can associate a user-level thread with a kernel-level thread
• Or, multiplex user-level threads on top of kernel-level threads

Kernel-level threads
• Integrated with OS (informed scheduling)
• Slower to create, manipulate, synchronize

User-level threads
• Faster to create, manipulate, synchronize
• Not integrated with OS (uninformed scheduling)

Use Case: Java Virtual Machine

31

Java Virtual Machine (JVM) (also C#, others)
• Java threads are user-level threads
• On older Unix, only one “kernel thread” per process

o Multiplex all Java threads on this one kernel thread
• On modern OSes

o Can multiplex Java threads on multiple kernel threads
o Can have more Java threads than kernel threads
o Why?

User Threads on Kernel Threads

32

User threads implemented on kernel threads
• Multiple kernel-level threads per process
• thread_create, thread_exit still library functions as before

k

User thread

Kernel threadk k

Sometimes called n : m threading
• Have n user threads per m kernel threads (Simple user-level threads are

n : 1, kernel threads 1 : 1)

Implementing User-Level Threads

33

Allocate a new stack for each thread_create
Keep a queue of runnable threads
Schedule periodic timer signal (setitimer)

• Switch to another thread on timer signals (preemption)
Replace blocking system calls (read/write) to non-blocking calls

• If operation would block, switch and run different thread

timer

Thread manager

t t t t

Ready

t

User
space

Kernel
space k

The thread scheduler determines when a thread runs

It uses queues to keep track of what threads are doing
• Just like the OS and processes
• But it is implemented at user-level in a library

Run queue: Threads currently running (usually one)

Ready queue: Threads ready to run

Are there wait queues?
• How might you implement sleep(time)?

Implementing User-Level Threads

34

timer

Thread manager

t t t t
Ready

t

User
space

Kernel
space k

Non-preemptive Thread Scheduling

35

Ping thread

While (1) {
 printf("ping\n");
 yield();
}

Pong Thread

While (1) {
 printf("pong\n");
 yield();
}

Threads voluntarily give up the CPU with yield

What is the output of running these two threads?

yield()

36

Wait a second. How does yield() work?

It gives up the CPU to another thread
• In other words, it context switches to another thread

So what does it mean for yield to return?
• It means that another thread called yield!

Execution trace of ping/pong
• printf(“ping\n”);
• yield();
• printf(“pong\n”);
• yield();
• …

Preemptive Thread Scheduling

37

Non-preemptive threads have to voluntarily give up CPU
• A long-running thread will take over the machine
• Only voluntary calls to yield, sleep, or finish cause a context switch

Preemptive scheduling causes an involuntary context switch
• Need to regain control of processor asynchronously
• Use timer interrupt
• Timer interrupt handler forces current thread to “call” yield

Thread Context Switch

38

The context switch routine does all of the magic
• Saves context of the currently running thread (old_thread)

o Push all machine state onto its stack
• Restores context of the next thread

o Pop all machine state from the next thread’s stack
• The next thread becomes the current thread
• Return to caller as new thread

This is all done in assembly language
• It works at the level of the procedure calling convention, so it cannot be

implemented using procedure calls

Pintos switch_threads

39

C declaration for thread-switch function:
• struct thread *switch_threads (struct thread *cur,

struct thread *next);

Recall: Thread control block structure
struct thread {

tid_t tid; /* Thread identifier. */
enum thread_status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8_t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list_elem allelem; /* List element for all threads
list. */
struct list_elem elem; /* List element. */
unsigned magic; /* Detects stack overflow. */

};
uint32_t thread_stack_ofs = offsetof(struct thread, stack);

Pintos switch_threads implementation

40

Pintos’s implements switch_thread in i386 assembly

pushl %ebx; pushl %ebp # Save callee-saved regs
pushl %esi; pushl %edi
mov thread_stack_ofs, %edx # %edx = offset of stack field
 # in thread struct
movl 20(%esp), %eax # %eax = cur
movl %esp, (%eax,%edx,1) # cur->stack = %esp
movl 24(%esp), %ecx # %ecx = next
movl (%ecx,%edx,1), %esp # %esp = next->stack
popl %edi; popl %esi # Restore calle-saved regs
popl %ebp; popl %ebx
ret # Resume execution

Calling Conventions

41

Calling Conventions is
• a standard on how functions should be called by the machine
• how a function call in C/C++ gets converted into assembly language
• Compilers need to obey this standard in compiling code into assembly

Use case
• A program calls functions across many object files and libraries
• For these codes to be interfaced together, we need a standardization for

calls

Calling Conventions

42

x86 calling convention stack setup
int compute(int a, int b)
{

int i, result;
result = 0;
for (i = 0; i < a; i++)
 result = result + b - i;
return result;

}

void foo()
{

int x, y, z;
x = 3;
y = 5;
z = compute(x, y);
printf("compute(%d, %d)=%d\n", x, y, z);

}

call argument

return addr

old frame ptr
fp

callee-saved
registers

Local vars
and temps

sp

Calling Conventions

43

Registers divided into 2 groups
• caller-saved regs: callee function free to modify

o on x86, %eax [return val], %edx, & %ecx
• callee-saved regs: callee function must restore

to original value upon return
o on x86, %ebx, %esi, %edi, plus %ebp and %esp

old frame ptr

callee-saved
registers

Local vars
and temps

return addr

call argument

fp

sp• Save active caller register
• Call compute (pushes pc)

• Restore caller register

foo

• save used callee register
• … do stuff…
• restore callee save registers
• jump back to calling function

compute

Pintos switch_threads implementation

44

Pintos’s implements switch_thread in i386 assembly

pushl %ebx; pushl %ebp # Save caller-saved regs
pushl %esi; pushl %edi
mov thread_stack_ofs, %edx # %edx = offset of stack field
 # in thread struct
movl 20(%esp), %eax # %eax = cur
movl %esp, (%eax,%edx,1) # cur->stack = %esp
movl 24(%esp), %ecx # %ecx = next
movl (%ecx,%edx,1), %esp # %esp = next->stack
popl %edi; popl %esi # Restore calle-saved regs
popl %ebp; popl %ebx
ret # Resume execution

Pintos switch_thread

45

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

%esp

next

Current
stack

current

Return addr

next

next
stack

current

Return addr

%ebx
%ebp
%esi
%edi

struct thread *switch_threads (struct thread *cur, struct thread *next);

Pintos switch_thread

46

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

%esp

next

Current
stack

current

Return addr

next

next
stack

current

Return addr

%ebx
%ebp
%esi
%edi

mov thread_stack_ofs, %edx
movl 20(%esp), %eax
movl %esp, (%eax,%edx,1)
movl 24(%esp), %ecx
movl (%ecx,%edx,1), %esp

%ebx
%ebp
%esi
%edi

cur->stack = %esp
%esp = next->stack

struct thread *switch_threads (struct thread *cur, struct thread *next);

Pintos switch_thread

47

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

%esp

next

Current
stack

current

Return addr

next

next
stack

current

Return addr

%ebx
%ebp
%esi
%edi

mov thread_stack_ofs, %edx
movl 20(%esp), %eax
movl %esp, (%eax,%edx,1)
movl 24(%esp), %ecx
movl (%ecx,%edx,1), %esp

%ebx
%ebp
%esi
%edi

popl %edi; popl %esi
popl %ebp; popl %ebx

struct thread *switch_threads (struct thread *cur, struct thread *next);

Pintos switch_thread

48

pushl %ebx; pushl %ebp
pushl %esi; pushl %edi

%esp

next

Current
stack

current

Return addr

next

next
stack

current

Return addr

Callee-saved
Registers
restored

mov thread_stack_ofs, %edx
movl 20(%esp), %eax
movl %esp, (%eax,%edx,1)
movl 24(%esp), %ecx
movl (%ecx,%edx,1), %esp

%ebx
%ebp
%esi
%edi

popl %edi; popl %esi
popl %ebp; popl %ebx

struct thread *switch_threads (struct thread *cur, struct thread *next);

ret

Thread Summary

49

The operating system as a large multithreaded program
• Each process executes as a thread within the OS

Multithreading is also very useful for applications
• Efficient multithreading requires fast primitives
• Processes are too heavyweight

Solution is to separate threads from processes
• Kernel-level threads much better, but still significant overhead
• User-level threads even better, but not well integrated with OS

Now, how do we get our threads to correctly cooperate with each other?
• Synchronization…

Next Time…

50

Read Chapters 28, 29

	Slide 1: Lecture 4: Thread Fall 2025
	Slide 2: Recap: Process Creation
	Slide 3: Divergence
	Slide 4: Process Creation: Unix (2)
	Slide 5: Why fork()?
	Slide 6: Example: Web Server
	Slide 7: Example: Shell
	Slide 8: Why fork()?
	Slide 9: Example: redirect
	Slide 10: Spawning a Process Without fork?
	Slide 11: Questions
	Slide 12: Process Termination
	Slide 13: wait() a second…
	Slide 14: Problem with Process
	Slide 15: Problem with fork()
	Slide 16: Rethinking Process
	Slide 17: Rethinking Process
	Slide 18: Threads
	Slide 19: Small and Fast…
	Slide 20: Threads in a Process
	Slide 21: Thread address space
	Slide 22: Process/Thread Separation
	Slide 23: Recall fork
	Slide 24: Threads: Concurrent Servers
	Slide 25: Thread Primitives
	Slide 26: Thread Implementation
	Slide 27: Limitations of Kernel Thread
	Slide 28: Alternative: User-Level Threads
	Slide 29: Limitation of User-level Threads
	Slide 30: Kernel and User Threads
	Slide 31: Use Case: Java Virtual Machine
	Slide 32: User Threads on Kernel Threads
	Slide 33: Implementing User-Level Threads
	Slide 34: Implementing User-Level Threads
	Slide 35: Non-preemptive Thread Scheduling
	Slide 36: yield()
	Slide 37: Preemptive Thread Scheduling
	Slide 38: Thread Context Switch
	Slide 39: Pintos switch_threads
	Slide 40: Pintos switch_threads implementation
	Slide 41: Calling Conventions
	Slide 42: Calling Conventions
	Slide 43: Calling Conventions
	Slide 44: Pintos switch_threads implementation
	Slide 45: Pintos switch_thread
	Slide 46: Pintos switch_thread
	Slide 47: Pintos switch_thread
	Slide 48: Pintos switch_thread
	Slide 49: Thread Summary
	Slide 50: Next Time…

