
Lecture 5: Scheduling

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

2

Lab 0
• Due this Friday
• Done individually (cannot share with or copy form your to-be-teammates)

Find your project group member soon
• So you can get started with Lab 1 without delay
• Fill out Google form of group info (will upload on Piazza)

o https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-
FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog

https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog

Recap: Processes, Threads

3

Process is the OS abstraction for execution
• own view of machine

Process components
• address space, program counter, registers, open files, etc.
• kernel data structure: Process Control Block (PCB)

Process vs. thread

Process/thread states and APIs
• state graph and queues
• process creation, deletion, waiting

Multiple processes/threads
• overlapping I/O and CPU activities
• context switch

New Ready

Waiti
ng

Runni
ng

Termina
ted

Create
Process

Process
Exit

Schedule
Process

Interrupt

I/O
Done

I/O Wait,
etc

Scheduling Overview

4

The scheduling problem:
• Have 𝐾 jobs ready to run
• Have 𝑁 ≥ 1 CPUs

Policy: which jobs should we assign to which CPU(s), for how long?
• we’ll refer to schedulable entities as jobs – could be processes, threads, people, etc.

Mechanism: context switch, process state queues

vim

GCC

Chrome

iTunes

P1

P2

P3

P4

P1 P2 P3 P4

CPU1

CPU2

CPUn

...

Scheduling Goals

5

Goal 1: guarantee “good service”
• To decide what job to run next and for how long
• Good service could be one of many different criteria

o Fairness – giving each process a fair share of the CPU
o Throughput – maximize jobs per second
o Response time - respond to requests quickly

Known as short-term scheduling decision
• Happens relatively frequently
• Want to minimize the overhead of scheduling

o Fast context switches, fast queue manipulation

Scheduling Goals

6

Goal 2: loaded jobs into memory
• To determine the multiprogramming level: how many jobs to run

simultaneously
• Moving jobs to/from memory is often called swapping

Known as long-term scheduling decision
• Happens relatively infrequently
• Significant overhead in swapping a process out to disk

Virtual Memory Lecture (Lecture 10-13)

What Is “Good Service”?

7

How do we measure the effectiveness of a scheduling algorithm?

Batch systems strive for
• Throughput – # of processes that complete per unit time

o # 𝑗𝑜𝑏𝑠/𝑡𝑖𝑚𝑒
o Higher is better

• Turnaround time – time for each process to complete
o 𝑇𝑓𝑖𝑛𝑖𝑠ℎ − 𝑇𝑠𝑡𝑎𝑟𝑡

o Lower is better
• CPU utilization – %𝐶𝑃𝑈 fraction of time CPU doing productive work

What Is “Good Service”?

8

Interactive systems strive to
• minimize response time for interactive jobs (PC)

o 𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 − 𝑇𝑟𝑒𝑞𝑢𝑒𝑠𝑡:time between waiting → ready transition and ready → running
o Lower is better

• Proportionality – meet users’ expectations
o Service-level objective(SLO)

• Utilization and throughput are often traded off for better response time

Real-time systems
• Meeting deadlines: avoid losing data
• Predictability: avoid quality degradation in multimedia systems

Tradeoffs

9

Improving on one metric can hurt another

For example:
• We want to improve throughput, so we decide to only schedule short

jobs
• But now longer jobs never get run, so their turnaround time is effectively

infinite

When Do We Schedule CPU?

10

Scheduling decisions may take place when a process:
❶ Switches from running to waiting state
❷ Switches from running to ready state
❸ Switches from new/waiting to ready
❹ Exits

Non-preemptive schedules use ❶ & ❹ only

Preemptive schedulers run at all four points

New Ready

Terminated

Create
Process

Process
Exit

Schedule
Process

Interrupt

I/O Done

I/O or waitRunning

Waiting

❶

❷

❸
❸

❹

Scheduling Overviews

11

• Textbook scheduling

• Priority scheduling

• Advanced scheduling topics (not covered)

FCFS Scheduling

12

“First-come first-served” (FCFS): Run jobs in order that they arrive

Examples:
• Say P1 needs 24 sec, while P2 and P3 need 3.
• Say P2, P3 arrived immediately after P1

P1
0 24

P2
27

P3
30

Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

Turnaround Time: P1 : 24, P2 : 27, P3 : 30
• Average TT: (24 + 27 + 30) / 3 = 27

Waiting Time: P1 : 0, P2 : 24, P3 : 27
• Average WT: (0 + 24 + 27) / 3 = 17

Can we do better with FCFS?

FCFS Scheduling Continued

13

Suppose we scheduled P2, P3, then P1

P1
6 24

P2
0

P3
3

Throughput: 3 jobs / 30 sec = 0.1 jobs/sec

Turnaround Time: P1 : 30, P2 : 3, P3 : 6
• Average TT: (30 + 3 + 6) / 3 = 13

Observations: scheduling algorithm can reduce TT
• Minimizing waiting time can improve RT and TT

Can a scheduling algorithm improve throughput?
• Yes, if jobs require both computation and I/O

Scheduling Jobs with Computation & I/O

14

CPU is one of several devices needed by users’ jobs
• CPU runs compute jobs, Disk drive runs disk jobs, etc.
• With network, part of job may run on remote CPU

Scheduling 1-CPU system with n I/O devices like scheduling
asymmetric (n + 1)-CPU multiprocessor

• Result: (n + 1)-fold throughput gain!

Scheduling Jobs with Computation & I/O(2)

15

Example: disk-bound grep + CPU-bound matrix_multiply
• Overlap them just right, throughput will be almost doubled

grep Wait for disk Wait for disk Wait for disk

matrix multiply

Wait for CPU

Disk
busy

idle

busy

idle
CPU

FCFS Limitations

16

FCFS algorithm is non-preemptive in nature
• Once CPU time has been allocated to a process, other processes can

get CPU time only after the current process has finished or gets blocked.

This property of FCFS scheduling is called Convoy Effect

Shortest Job First (SJF)

17

Shortest Job First (SJF)
• Choose the job with the smallest expected CPU burst
• Person with smallest # of items in shopping cart checks out first

Examples:
• Say P1 needs 8 sec, P2 4 sec and P3 2 sec.

P1
6 14

P3
0

P2
2

Average Waiting Time: (0 + 2 + 6) / 3 = 2.67

SJF Has Optimal Average Waiting Time

18

SJF has provably optimal minimum average waiting time (AWT)

Previous Examples:
• P1 needs 8 sec, P2 4 sec and P3 2 sec.

P1 P3P2Schedule 1

P1 P3 P2Schedule 2

P1 P3P2Schedule 3

P1P3P2Schedule 4

P1P3 P2Schedule 5

P1P3 P2SJF

AWT: (0 + 8 + 12) / 3 = 6.67

AWT = (0+8+10)/3 = 6

AWT = (0+4+12)/3 = 5.33

AWT = (0+4+6)/3 = 3.33

AWT = (0+2+10)/3 = 4

AWT = (0+2+6)/3 = 2.67

Problem: what if new jobs arrive?

Counterexample

19

The optimality proof only applies when all jobs are available at
time 0

Suppose we have instead:
• At time 0, P1 needs 4 sec and P2 needs 5 sec.
• At time 2 seconds, processes P3, P4, and P5 arrive, each requiring 1

second of CPU time.
P1

P3
P2

0 2
time

P4
P5

Counterexample

20

The optimality proof only applies when all jobs are available at
time 0

Suppose we have instead:
• At time 0, P1 needs 4 sec and P2 needs 8 sec.
• At time 2 seconds, processes P3, P4, and P5 arrive, each requiring 1

second of CPU time.
P1 P3 P2

0 2 time

P4 P5

What is the AWT?

Shortest Remaining Time Next

21

SRTF chooses the process whose remaining run time is the
shortest

• When a new job arrives, its remaining run time is compared to the one of
the currently running process

• If current process has more remaining time than the run time of
new process, the current process is preempted and the new
one is run

Examples with Preemptive

22

P1

P3
P2

P4
P5

0
0
2
2
2

Process Arrive Time Burst Time

4
5
1
1
1

Non-preemptive SJF:

Preemptive SRJF:

P1 P3 P2

0 2

P4 P5

time

P1 P3 P2

0 2

P4 P5

time

P1

What is the AWT?

SJF Limitations

23

This algorithm also assumes that running time for all the
processes to be run is known in advance

• Impossible to know size of CPU burst ahead of time

Can potentially lead to unfairness or starvation

How can you make a reasonable guess?
• Estimate CPU burst length based on past
• E.g., exponentially weighted average

o 𝑡𝑛 actual length of process’s 𝑛𝑡ℎ CPU burst
o 𝜏𝑛+1 estimated length of proc’s (𝑛 + 1)𝑠𝑡 CPU burst
o Choose parameter 𝛼 where 0 < 𝛼 ≤ 1 , e.g., 𝛼 = 0.5
o Let 𝜏𝑛+1 = 𝑡𝑛 + (1 − 𝛼) 𝜏𝑛

Exp. Weighted Average Example

24

Round Robin (RR)

25

Now, since we have preemptive scheduling:
• Each process gets a small unit of CPU time (time quantum), usually 10-

100 milliseconds
• Run first process until its quantum is used up
• Move that process to the end and run the next process
• Simple, fair

o No process waits forever

Solution to fairness and starvation
• Each job is given a time slice called a quantum
• Preempt job after duration of quantum
• When preempted, move to back of FIFO queue

Examples with Round Robin

26

P1

P3
P2

P4
P5

0
0
2
2
2

Process Arrive Time Burst Time

4
5
1
1
1

Preemptive SRJF:

P1 P3 P2

0 2

P4 P5

time

P1

Round Robin with quantum as 1 second

P1 P3 P2

0 2

P4 P5

time

P1P2 P2 P1 P2P1

Advantage of Round Robin

27

Solution to fairness and starvation
• Each job is given a time slice called a quantum
• Preempt job after duration of quantum
• When preempted, move to back of FIFO queue

Advantages:
• Fair allocation of CPU across jobs
• Low average waiting time when job lengths vary
• Good for responsiveness if small number of jobs

Disadvantages?

Disadvantages of Round Robin

28

Context switches are frequent and need to be very fast

Varying sized jobs are good ...what about same-sized jobs?

Assume 2 jobs of time=100 each:

P1 P2 P1 P2 P1 P2 P1 P2…

Even if context switches were free...
• What would average turnaround time be with RR?
• Even worse than FCFS

Round Robin Discussion

29

How to pick quantum?
• What if too big?

o Response time can be very bad
• What if time slice too small?

o A notable percentage of the CPU time is spent in switching contexts

Actual choices of time slice:
• Initially, UNIX time slice one second:

o Worked ok when UNIX was used by one or two people.
o What if three compilations going on? 3 seconds to echo each keystroke!

• Need to balance short-job performance and long-job throughput
o Typical time slice today is between 10ms – 100ms

Scheduling Overviews

30

• Textbook scheduling

• Priority scheduling

• Advanced scheduling topics (not covered)

Priority Scheduling

31

Priority Scheduling
• Associate a numeric priority with each process

o E.g., smaller number means higher priority (Unix/BSD)
o Or smaller number means lower priority (Pintos)

• Give CPU to the process with highest priority
o Airline check-in for first class passengers
o Can be done preemptively or non-preemptively

• Can implement SJF, priority = 1/(expected CPU burst)

Problem: starvation – low priority jobs can wait indefinitely

Solution? “Age” processes
• Increase priority as a function of waiting time
• Decrease priority as a function of CPU consumption

Examples with Priority Scheduling

32

P1

P3
P2

P4
P5

0
3
4
8
12

Process Arrive Time Burst Time

5
1
3
7
2

Non-preemptive priority scheduling:

P1 P3

0 3

P4 P5

time

P1 P3 P4 P5

Priority

2
1
4
0
3

5 8 9

P2

16 18

P2P1

Preemptive priority scheduling

time0 3 7 8 15 184 9 12

P4

Priority Inversion (1)

33

Caveat using Priority Scheduling w/ Synch Primitives
• Priority scheduling rule

1) Always pick highest-priority thread
2) …unless a lower-priority thread is holding a resource the highest-priority thread

wants to get
• Potential Priority Inversion Problem

Two tasks: H at high priority, L at low priority

HL

resource
lock

wait
unlock

Priority Inversion (2)

34

Two tasks: H at high priority, L at low priority
• What if we have a tasks M enters system at medium priority, preempts L
• L unable to release R in time, H unable to run, despite having higher priority than M

Not just a hypothetical issue, it happened in real-world software!
• The root cause for a famous Mars PathFinder failure in 1997
• Low-priority data gathering task and a medium-priority communications

task prevented the critical bus management task from running

M HL

resource
lock

wait
preempt

Solution: Priority Donation

35

“Donate” our priority if we get blocked
• Whenever a high-priority task has to wait for some shared resource that

currently held by an executing low priority task,
• the low-priority task is temporarily assigned the priority of the highest

waiting priority task for the duration of its use of the shared resource

Why this helps?
• Since the low-priority task gets temporarily boosted priority, it keeps

medium priority tasks from pre-empting the (originally) low priority task
• Once resource released, low-priority task continues at its original priority

Priority Donation Example

36

M H

resource
lock

wait
preempt

L

Priority 2Priority 4 Priority 8Priority 8

Pintos Lab 1 Exercise 2.2

Details in lab 1 overview session

Combing Algorithms

37

Different types of jobs have different preferences
• Interactive, CPU-bound, batch, system, etc.
• Hard to use one size to fit all

Combining scheduling algorithms to optimize for multiple
objectives

• Have multiple queues
• Use a different algorithm for each queue
• Move processes among queues

Example: Multiple-level feedback queues (MLFQ)

Multiple-level Feedback Queues (MLFQ)

38

Developed by Fernando J. Corbató in 1962
• Corbató received the 1990 Turing Award for this work and other work in

Multics

Widely used in mainstream OSes: Unix, BSD, Windows, MacOS

You’ll get hands-on experience with it in Lab 1

Idea:

• Multiple queues representing different job types
• Queues w/ priorities: jobs in higher-priority queue preempt jobs lower-

priority queue
• Jobs on same queue use the same scheduling algorithm, typically RR

Multiple-level Queues Scheduling

39

System Processes

Interactive Processes

Interactive editing processes

Batch Processes

Student Processes

Highest priority

Lowest priority

Multiple-level Feedback Queues Scheduling

40

Goal #1: Optimize job turnaround time for “batch” jobs

Goal #2: Minimize response time for “interactive” jobs

Challenge:
• No a priori knowledge of what type a job is, what the next burst is, etc.
• Let a job tells us its “niceness” (priority)?

Idea:
• Change a process’s priority based on how it behaves in the past (history

“feedback”)

How to Change Priority Over Time

41

Attempt
• Rule A: Processes start at top priority
• Rule B: If job uses whole slice, demote process

o i.e., longer time slices at lower priorities
• Example : A long-running “batch” job

Problems:
• starvation
• gaming the system

o E.g., performing I/O right before time-slice ends

How to Change Priority Over Time

42

Fixing the problems:
• Periodically boost priority for jobs that haven’t been scheduled
• Account for job’s total run time at priority level (instead of just this time

slice)

MLFQ in BSD

43

Every runnable process on one of 32 run queues
• Kernel runs process on highest-priority non-empty queue
• Round-robins among processes on same queue

Process priorities dynamically computed
• Processes moved between queues to reflect priority changes

Favor interactive jobs that use less CPU

Process Priority Calculation in BSD

44

p_estcpu – per-process estimated CPU usage

p_nice – user-settable weighting factor, value range [-20, 20]

Process priority p_usrpri
𝑝_𝑢𝑠𝑟𝑝𝑟𝑖 ← 50 +

𝑝_𝑒𝑠𝑡𝑐𝑝𝑢

4
+ 2 × 𝑝_𝑛𝑖𝑐𝑒

• Calculated every 4 ticks, values are bounded to [50, 127]
• Decrease priority linearly based on recent CPU

How to calculate p_estcpu ?
• Incremented whenever timer interrupt found process running
• Decayed every second while process runnable

• Load is sampled average of length of run queue plus short-term sleep queue over last minute

𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 ←
2× 𝑙𝑜𝑎𝑑

2× 𝑙𝑜𝑎𝑑+1
 × 𝑝_𝑒𝑠𝑡𝑐𝑝𝑢 + 𝑝_𝑛𝑖𝑐𝑒

Tips for Pintos

45

Same basic idea for second half of Lab 1
• But 64 priorities, not 128
• Higher numbers mean higher priority (in BSD, higher numbers means

lower priority)
• Okay to have only one run queue if you prefer (less efficient, but we won’t
deduct points for it)

Have to negate priority equation:

𝑝_𝑢𝑠𝑟𝑝𝑟𝑖 ← 50 +
𝑝_𝑒𝑠𝑡𝑐𝑝𝑢

4
+ 2 × 𝑝_𝑛𝑖𝑐𝑒In BSD

In Pintos 𝑝_𝑢𝑠𝑟𝑝𝑟𝑖 ← 63 +
𝑟𝑒𝑐𝑒𝑛𝑡_𝑐𝑝𝑢

4
+ 2 × 𝑛𝑖𝑐𝑒

Scheduling Summary

46

Scheduling algorithm determines which process runs, quantum, priority…

Many potential goals of scheduling algorithms
• Utilization, throughput, wait time, response time, etc.

Various algorithms to meet these goals
• FCFS/FIFO, SJF, RR, Priority

Can combine algorithms
• Multiple-Level Feedback Queues (MLFQ)

Next Time

47

Read Chapter 28,29

	Slide 1: Lecture 5: Scheduling Fall 2025
	Slide 2: Administrivia
	Slide 3: Recap: Processes, Threads
	Slide 4: Scheduling Overview
	Slide 5: Scheduling Goals
	Slide 6: Scheduling Goals
	Slide 7: What Is “Good Service”?
	Slide 8: What Is “Good Service”?
	Slide 9: Tradeoffs
	Slide 10: When Do We Schedule CPU?
	Slide 11: Scheduling Overviews
	Slide 12: FCFS Scheduling
	Slide 13: FCFS Scheduling Continued
	Slide 14: Scheduling Jobs with Computation & I/O
	Slide 15: Scheduling Jobs with Computation & I/O(2)
	Slide 16: FCFS Limitations
	Slide 17: Shortest Job First (SJF)
	Slide 18: SJF Has Optimal Average Waiting Time
	Slide 19: Counterexample
	Slide 20: Counterexample
	Slide 21: Shortest Remaining Time Next
	Slide 22: Examples with Preemptive
	Slide 23: SJF Limitations
	Slide 24: Exp. Weighted Average Example
	Slide 25: Round Robin (RR)
	Slide 26: Examples with Round Robin
	Slide 27: Advantage of Round Robin
	Slide 28: Disadvantages of Round Robin
	Slide 29: Round Robin Discussion
	Slide 30: Scheduling Overviews
	Slide 31: Priority Scheduling
	Slide 32: Examples with Priority Scheduling
	Slide 33: Priority Inversion (1)
	Slide 34: Priority Inversion (2)
	Slide 35: Solution: Priority Donation
	Slide 36: Priority Donation Example
	Slide 37: Combing Algorithms
	Slide 38: Multiple-level Feedback Queues (MLFQ)
	Slide 39: Multiple-level Queues Scheduling
	Slide 40: Multiple-level Feedback Queues Scheduling
	Slide 41: How to Change Priority Over Time
	Slide 42: How to Change Priority Over Time
	Slide 43: MLFQ in BSD
	Slide 44: Process Priority Calculation in BSD
	Slide 45: Tips for Pintos
	Slide 46: Scheduling Summary
	Slide 47: Next Time

