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Administrivia
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Fill out project group form
o https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-

FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog

Lab 1 released
• Lab 1 overview session this Friday
• Read the requirement now
• Start with exercise 2.1 

GitHub classroom invitation link
• Used for the following lab assignments

https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog


Recap: Scheduling 
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The scheduling problem:
• Have 𝐾 jobs ready to run
• Have 𝑁 ≥ 1 CPUs
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Many potential goals of scheduling algorithms
• Utilization, throughput, wait time, response time, etc.

Various algorithms to meet these goals
• FCFS/FIFO, SJF, RR, Priority



Recap: Single and Multithreaded Processes 
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Process/Thread Separation
• The thread defines a sequential execution
• The process defines the address space and general process attributes

A thread is bound to a single process
• Processes, however, can have multiple threads

Threads become the unit of scheduling

Now, how do we get our threads to 
correctly cooperate with each other?

• Synchronization…



What Resources Are Shared?
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What Resources Are Shared?
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Local variables are not shared (private)
• Refer to data on the stack
• Each thread has its own stack
• Never pass/share/store a pointer to a local variable on the stack for 

thread T1 to another thread T2

Global variables and static objects are shared
• Stored in the static data segment, accessible by any thread

Dynamic objects and other heap objects are shared
• Allocated from heap with malloc/free or new/delete



Correctness with Concurrent Threads
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Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering



Motivated Example: Too Much Milk
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Time Alice Bob

People need to coordinate:
• Alice and Bob are roommate and they share milk
• Here is a story: they both thought they were buying one carton 

of milk, but they ended up with two!

3:00 Look in Fridge. Out of milk.

3:05 Leave for store.

3:20 Arrive home, put milk away. Arrive at store.

3:25 Buy milk.

3:30 Arrive home, put milk away. Oh no!

3:10 Arrive at store. Look in fridge. Out of milk.

3:15 Buy milk. Leave for store.



Too Much Milk… Operation?
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After thread 1 and thread 2 finishes, what is the value of x?
• could be 0, 1, -1
• Why?

o x++ and x-- are not atomic operations
o Load x from memory
o Modify value (add or subtract)
o Store back to memory

// Thread 1

void foo() {
    x++;
}

x is a global variable initialized to 0
// Thread 2

void bar() {
    x--;
}



One More Exercise 
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What value of p is passed to use
• Could be 0, 1000
• Why?

// Thread 1

p = 1000;
ready = 1;

int p = 0, ready = 0;
// Thread 2

while (!ready);
use(p)



Concurrency Is Important and Hard
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Therac-25: Radiation Therapy Machine with Unintended Overdose
• Concurrency errors caused the death of a number of patients

ATM Bank:
• Service a set of requests with out corrupting database



Problem with Shared Resources
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We focus on controlling access to shared resources

Basic problem
• If two concurrent threads (processes) are accessing a shared variable, 

and that variable is read/modified/written by those threads, then access 
to the variable must be controlled to avoid erroneous behavior.

Over the next couple of lectures, we will look at
• Mechanisms to control access to shared resources

o Locks, mutexes, semaphores, monitors, condition variables, etc.
• Patterns for coordinating accesses to shared resources

o Bounded buffer, producer-consumer, etc.



Problem with Shared Resources
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Problem: concurrent threads accessed a shared resource 
without any synchronization

• Know as a race condition



Race Condition Example: Bank Account
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Implement a function to handle withdrawals from a bank 
account:

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

Suppose that you have a family account with a balance of $10,000

Then you and you parent go to separate ATM machines and 
simultaneously withdraw $1000 from the account



Race Condition Example Continued
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The bank server will create separate threads for each person to 
do the withdrawals

These threads run on the same bank server:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

Let’s examine the schedules of these two threads together



Interleaved Schedules
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The execution of the two threads can be interleaved
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Context switch

After withdrawing $2000 from $10,000, balance of the account is…
• $ 9,000

• The banker would be very unhappy about it



How Interleaved Can It Get?
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How many possible interleaving?
• Only instructions are atomic
• A context switch can occur at any time
• OS can delay a thread for any time as long as it's not delayed forever

balance = get_balance(account);

balance = get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;



Shared Resources
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Problem: concurrent threads accessed a shared resource 
without any synchronization

• Know as a race condition

Although our example was updating a shared bank account, it is 
apply to any shared data structure

• Buffers, queues, lists, hash tables, etc.

We need mechanisms to control access to these shared 
resources in the face of concurrency

• So we can reason about how the program will operate



What do We Need for Controlling Concurrency 
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Mutual Exclusion
• When one thread access shared resource, other thread can not access it

Code that uses mutual exclusion to synchronize its execution is 
called a critical section

• Only one thread at a time can execute in the critical section
• All other threads are forced to wait on entry
• When a thread leaves a critical section, another can enter
• Example: sharing your bathroom with housemates

What requirements would you place on a critical section?



Critical Section Requirements
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1. Mutual exclusion (mutex)
• If one thread is in the critical section, then no other is

2. Progress
• If some thread T is not in the critical section, then T cannot prevent some 

other thread S from entering the critical section
• A thread in the critical section will eventually leave it

3. Bounded waiting (no starvation)
• If some thread T is waiting on the critical section, then T will eventually 

enter the critical section



Critical Section Requirements
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4. Performance
• The overhead of entering and exiting the critical section is small with 

respect to the work being done within it

In summary:
• Safety property: nothing bad happens

o Mutex
• Liveness property: something good happens

o Progress, Bounded Waiting
• Performance requirement

o Performance

Note: correctness of concurrent is guarantee by design 



Too Much Milk: Solution #1
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How about leave a note?
if (milk == 0) {            

if (note == 0) {        
note = 1;           
milk++; 
note = 0;       

}
}

// if no milk
// if no note
// leave note
// buy milk
// remove note

Does it solve the problem?



Too Much Milk: Solution #1
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Problem with leave a note

if (milk == 0) { 

           
if (note == 0) {        

note = 1;           
milk++; 
note = 0;       

}
}

Alice Bob

if (milk == 0) {            
if (note == 0) {        

note = 1;           
milk++; 
note = 0;       

}
}



Too Much Milk: Solution #2
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How about leave two notes

noteA = 1;
if (noteB == 0) { 

if (milk == 0) {    
milk++; 

}
}
noteA = 0;

Alice Bob
noteB = 1;
if (noteA == 0) { 

if (milk == 0) {        
milk++; 

}
}
noteB = 0;

Is this safe?
• Yes
• What if Alice executes noteA = 1. At the same time, Bob executes noteB = 1?

o I’m not getting milk, You’re getting milk
o Starvation



Too Much Milk: Solution #3
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Monitoring note: 

noteA = 1;
while (noteB == 1);
if (noteB == 0) { 

if (milk == 0) {    
milk++; 

}
}
noteA = 0;

Alice Bob
noteB = 1;
if (noteA == 0) { 

if (milk == 0) {        
milk++; 

}
}
noteB = 0;

Is this safe?
• Yes

Do it ensure liveness?



Where Are We Going with Synchronization?
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Coordination happens across all layers

Shared Programs

Atomic Operator

Locks; Semaphores; Monitors; Atomic Read/Write

Programs

Mechanism

Hardware



Atomic Operations
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Atomic Operation: an operation that always runs to completion 
or not at all

•  annot be stopped in the middle 
• cannot be modified by someone else in the middle
• fundamental building block for synchronization

On most machines, memory references and assignments are 
atomic

Many instructions are not atomic
• Double-precision floating point store often not atomic



Mechanisms For Building Critical Sections
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Atomic read/write
• Can it be done?

Locks
• Primitive, minimal semantics, used to build others

Semaphores
• Basic, easy to get the hang of, but hard to program with

Monitors
• High-level, requires language support, operations implicit



Mutex with Atomic R/W: Try #1
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while (true) {
while (turn != 1);
critical section
turn = 2;
outside of critical section

}

while (true) {
while (turn != 2);
critical section
turn = 1;
outside of critical section

}

This is called alternation

Does it satisfy the safety requirement?
• Yes

Does it satisfy the liveness requirement?
• No, T1 can go into infinite loop outside of the critical section preventing T2 from 

entering

int turn = 1; 
𝑇1 𝑇2



Mutex with Atomic R/W: Peterson’s Algorithm
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while (true) {
   try1 = true;
   turn = 2;

while (try2 && turn != 1);
critical section
try1 = false;
outside of critical section

}

while (true) {
   try2 = true;
   turn = 1;

while (try1 && turn != 2);
critical section
try2 = false;
outside of critical section

}

Does it satisfy the liveness requirement?

Does it satisfy the safety requirement?

int turn = 1;
bool try1 = false, try2 = false; 

𝑇1 𝑇2



Proof Sketch of Peterson’s Algorithm
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while (true) {
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

1   try1 = true;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

2   turn = 2;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

3   while (try2 && turn != 1);
{ try1 ∧ (turn == 1 ∨ ¬ try2 ∨
(try2 ∧ (line at 6 or at 7))) }

    critical section
4   try1 = false;
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section
}

while (true) {
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

5 try2 = true;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

6  turn = 1;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

7 while (try1 && turn != 2);
{ try2 ∧ (turn == 2 ∨ ¬ try1 ∨
(try1 ∧ (line at 2 or at 3))) }

   critical section
8 try2 = false;
  {¬ try2 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section
}

𝑇1 𝑇2

Safety property: (line 4) ∧ (line 8) ⇒ (turn == 1 ∧ turn == 2)

int turn = 1;
bool try1 = false, try2 = false; 



Locks
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A lock is an object in memory providing two operations
• acquire(): wait until lock is free, then take it to enter a C.S
• release(): release lock to leave a C.S, waking up anyone waiting for it

Threads pair calls to acquire and release
• Between acquire/release, the thread holds the lock
• acquire does not return until any previous holder releases
• What can happen if the calls are not paired?

Locks can spin (a spinlock) or block (a mutex)
• Can break apart Peterson's to implement a spinlock



Too Much Milk: Solution #4
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Solution #4: lock

lock.acquire();
if (milk == 0) {    

milk++; 
}
lock.release();

Alice Bob
lock.acquire();
if (milk == 0) {       

milk++; 
}
lock.release();



Fix Banking Problem with Lock
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withdraw (account, amount) {
   acquire(lock)
   balance = get_balance(account);
   balance = balance – amount;   
   put_balance(account, balance);
   release(lock);
   return balance;

}

Critical 
Section

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

put_balance(account, balance);
release(lock);

acquire(lock);

• What happens when green tries to acquire the lock?
• Why is the “return” outside the critical section? Is this ok?
• What happens when a third thread calls acquire?



Implementing Locks (1)
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How do we implement locks? Here is one attempt:

struct lock {
    int held = 0;
}
void acquire (lock) {
    while (lock→held);
    lock→held = 1;
}

void release (lock) {
    lock→held = 0;
}

busy-wait (spin-wait)

for lock to be released

Called a spinlock because a thread spins waiting for the lock to be 
released



Implementing Locks (2)
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The while is not atomic:
• Two independent threads may both notice that a lock has been released 

and thereby acquire it.
struct lock {
    int held = 0;
}
void acquire (lock) {
    while (lock→held);
    lock→held = 1;
}

void release (lock) {
    lock→held = 0;
}

A context switch can 

occur here, causing a 

race condition



Implementing Locks (3)
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The problem is that the implementation of locks has critical sections, too!

How do we stop the recursion?

The implementation of acquire/release must be atomic
• An atomic operation is one which executes as though it could not be interrupted
• Code that executes “all or nothing”

How do we make them atomic?

Need help from hardware
• Atomic instructions (e.g., test-and-set)
• Disable/enable interrupts (prevents context switches)



Atomic Instructions: Test-And-Set
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The semantics of test-and-set are:
• Record the old value
• Set the value to indicate available
• Return the old value

Hardware executes it atomically!

When executing test-and-set on “flag”
• What is value of flag afterwards if it was initially False? True?
• What is the return result if flag was initially False? True?

Other similar flavor atomic instructions: xchg, CAS

bool test_and_set(bool *flag) {
bool old = *flag;
*flag = True;
return old;

}



Using Test-And-Set to Implement Lock
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Here is our lock implementation with test-and-set:
struct lock {
    int held = 0;
}
void acquire (lock) {
    while (test_and_set(&lock→held));
}

void release (lock) {
    lock→held = 0;
}

When will the while return? What is the value of held?

What about multiprocessors?

Implement it with xchg, Compare-And-Swap



Problems with Spinlocks
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The problem with spinlocks is that they are wasteful
• If a thread is spinning on a lock, then the thread holding the lock cannot 

make progress (on a uniprocessor)

How did the lock holder give up the CPU in the first place?
• Lock holder calls yield or sleep
• Involuntary context switch

Only want to use spinlocks as primitives to build higher-level 
synchronization constructs



Disabling Interrupts

41

Another implementation of acquire/release is to disable interrupts:
struct lock {
    int held = 0;
}
void acquire (lock) {
    disable interrupts;
}

void release (lock) {
    enable interrupts;
}

Note that there is no state associated with the lock

Can two threads disable interrupts simultaneously?



On Disabling Interrupts
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Disabling interrupts blocks notification of external events that could 
trigger a context switch (e.g., timer)

• This is what Pintos uses as its primitive

In a “real” system, this is only available to the kernel
• Why?

Disabling interrupts is insufficient on a multiprocessor
• Interrupts are only disabled on a per-core basis
• Back to atomic instructions

Like spinlocks, only want to disable interrupts to implement higher-level
synchronization primitives

• Don’t want interrupts disabled between acquire and release



Summarize Where We Are
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Goal: Use mutual exclusion to protect critical sections of code that
access shared resources

Method: Use locks (either spinlocks or disable interrupts)

Problem: Critical sections (CS) can be long

acquire(lock)

…

Critical section

…

release(lock)

Disabling Interrupts:
• Disabling interrupts for long 

periods of time can miss or 

delay important events (e.g., 

timer, I/O)

Spinlocks:
• Threads waiting to acquire lock 

spin in test-and-set loop

• Wastes CPU cycles

• Longer the CS, the longer the 

spin, greater the chance for 
lock holder to be interrupted



Higher-Level Synchronization
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Spinlocks and disabling interrupts are useful only for very short and 
simple critical sections

• Wasteful otherwise
• These primitives are “primitive” – don’t do anything besides mutual exclusion

Need higher-level synchronization primitives that:
• Block waiters
• Leave interrupts enabled within the critical section

All synchronization requires atomicity

So we’ll use our “atomic” locks as primitives to implement them



Implementing Locks (4)
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Block waiters, interrupts enabled in critical sections
struct lock {
    int held = 0;
    queue Q;
}
void acquire (lock) {
    Disable interrupts;
    while (lock→held) {
         put current thread on lock Q;
         block current thread;
    }
    lock→held = 1;
    Enable interrupts;

}

void release (lock) {
    Disable interrupts;
    if (Q) remove waiting thread;
    unblock waiting thread;
    lock→held = 0
    Enable interrupts;

}

Pintos threads/synch.c: sema_down/up

acquire(lock)

…

Critical section

…

release(lock)

Interrupts Disabled

Interrupts Disabled

Interrupts Enabled



Summary
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Why we need synchronizations

Critical sections

Simple algorithms to implement critical sections

Locks

Lock implementations



Next Time…
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Read Chapters 30,31



Shared Resources
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Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering



Shared Resources
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Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering



Shared Resources
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Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering
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