
Lecture 6: Synchronization

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

2

Fill out project group form
o https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-

FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog

Lab 1 released
• Lab 1 overview session this Friday
• Read the requirement now
• Start with exercise 2.1

GitHub classroom invitation link
• Used for the following lab assignments

https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog
https://docs.google.com/forms/d/e/1FAIpQLScqr0QdmoruMu_w7-FizeQ9OYaijg9-d9Y58zOV28wivnYp5A/viewform?usp=dialog

Recap: Scheduling

3

The scheduling problem:
• Have 𝐾 jobs ready to run
• Have 𝑁 ≥ 1 CPUs

vim

GCC

Chrome

iTunes

P1

P2

P3

P4

P1 P2 P3 P4

CPU1

CPU2

CPUn

.

..

Many potential goals of scheduling algorithms
• Utilization, throughput, wait time, response time, etc.

Various algorithms to meet these goals
• FCFS/FIFO, SJF, RR, Priority

Recap: Single and Multithreaded Processes

4
Multithreaded process

registers

stack

registers

stack

registers

stack

Single-threaded process

thread

registers

data code file

stack

thread

data code file

Process/Thread Separation
• The thread defines a sequential execution
• The process defines the address space and general process attributes

A thread is bound to a single process
• Processes, however, can have multiple threads

Threads become the unit of scheduling

Now, how do we get our threads to
correctly cooperate with each other?

• Synchronization…

What Resources Are Shared?

5

Heap

Static Data

Code

SP

PC

Stack (Thread 1)

Stack (Thread 2)

Stack (Thread 3)

Code

Code

SP

SPThread 2

PC

Thread 1

Thread 3

PC

What Resources Are Shared?

6

Local variables are not shared (private)
• Refer to data on the stack
• Each thread has its own stack
• Never pass/share/store a pointer to a local variable on the stack for

thread T1 to another thread T2

Global variables and static objects are shared
• Stored in the static data segment, accessible by any thread

Dynamic objects and other heap objects are shared
• Allocated from heap with malloc/free or new/delete

Correctness with Concurrent Threads

7

Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering

Motivated Example: Too Much Milk

8

Time Alice Bob

People need to coordinate:
• Alice and Bob are roommate and they share milk
• Here is a story: they both thought they were buying one carton

of milk, but they ended up with two!

3:00 Look in Fridge. Out of milk.

3:05 Leave for store.

3:20 Arrive home, put milk away. Arrive at store.

3:25 Buy milk.

3:30 Arrive home, put milk away. Oh no!

3:10 Arrive at store. Look in fridge. Out of milk.

3:15 Buy milk. Leave for store.

Too Much Milk… Operation?

9

After thread 1 and thread 2 finishes, what is the value of x?
• could be 0, 1, -1
• Why?

o x++ and x-- are not atomic operations
o Load x from memory
o Modify value (add or subtract)
o Store back to memory

// Thread 1

void foo() {
 x++;
}

x is a global variable initialized to 0
// Thread 2

void bar() {
 x--;
}

One More Exercise

10

What value of p is passed to use
• Could be 0, 1000
• Why?

// Thread 1

p = 1000;
ready = 1;

int p = 0, ready = 0;
// Thread 2

while (!ready);
use(p)

Concurrency Is Important and Hard

11

Therac-25: Radiation Therapy Machine with Unintended Overdose
• Concurrency errors caused the death of a number of patients

ATM Bank:
• Service a set of requests with out corrupting database

Problem with Shared Resources

12

We focus on controlling access to shared resources

Basic problem
• If two concurrent threads (processes) are accessing a shared variable,

and that variable is read/modified/written by those threads, then access
to the variable must be controlled to avoid erroneous behavior.

Over the next couple of lectures, we will look at
• Mechanisms to control access to shared resources

o Locks, mutexes, semaphores, monitors, condition variables, etc.
• Patterns for coordinating accesses to shared resources

o Bounded buffer, producer-consumer, etc.

Problem with Shared Resources

13

Problem: concurrent threads accessed a shared resource
without any synchronization

• Know as a race condition

Race Condition Example: Bank Account

14

Implement a function to handle withdrawals from a bank
account:

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

Suppose that you have a family account with a balance of $10,000

Then you and you parent go to separate ATM machines and
simultaneously withdraw $1000 from the account

Race Condition Example Continued

15

The bank server will create separate threads for each person to
do the withdrawals

These threads run on the same bank server:
withdraw (account, amount) {

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

withdraw (account, amount) {
balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
return balance;

}

Let’s examine the schedules of these two threads together

Interleaved Schedules

16

The execution of the two threads can be interleaved
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Context switch

After withdrawing $2000 from $10,000, balance of the account is…
• $ 9,000

• The banker would be very unhappy about it

How Interleaved Can It Get?

17

How many possible interleaving?
• Only instructions are atomic
• A context switch can occur at any time
• OS can delay a thread for any time as long as it's not delayed forever

balance = get_balance(account);

balance = get_balance(account);

put_balance(account, balance);

put_balance(account, balance);

balance = balance – amount;

balance = balance – amount;

Shared Resources

18

Problem: concurrent threads accessed a shared resource
without any synchronization

• Know as a race condition

Although our example was updating a shared bank account, it is
apply to any shared data structure

• Buffers, queues, lists, hash tables, etc.

We need mechanisms to control access to these shared
resources in the face of concurrency

• So we can reason about how the program will operate

What do We Need for Controlling Concurrency

19

Mutual Exclusion
• When one thread access shared resource, other thread can not access it

Code that uses mutual exclusion to synchronize its execution is
called a critical section

• Only one thread at a time can execute in the critical section
• All other threads are forced to wait on entry
• When a thread leaves a critical section, another can enter
• Example: sharing your bathroom with housemates

What requirements would you place on a critical section?

Critical Section Requirements

20

1. Mutual exclusion (mutex)
• If one thread is in the critical section, then no other is

2. Progress
• If some thread T is not in the critical section, then T cannot prevent some

other thread S from entering the critical section
• A thread in the critical section will eventually leave it

3. Bounded waiting (no starvation)
• If some thread T is waiting on the critical section, then T will eventually

enter the critical section

Critical Section Requirements

21

4. Performance
• The overhead of entering and exiting the critical section is small with

respect to the work being done within it

In summary:
• Safety property: nothing bad happens

o Mutex
• Liveness property: something good happens

o Progress, Bounded Waiting
• Performance requirement

o Performance

Note: correctness of concurrent is guarantee by design

Too Much Milk: Solution #1

22

How about leave a note?
if (milk == 0) {

if (note == 0) {
note = 1;
milk++;
note = 0;

}
}

// if no milk
// if no note
// leave note
// buy milk
// remove note

Does it solve the problem?

Too Much Milk: Solution #1

23

Problem with leave a note

if (milk == 0) {

if (note == 0) {

note = 1;
milk++;
note = 0;

}
}

Alice Bob

if (milk == 0) {
if (note == 0) {

note = 1;
milk++;
note = 0;

}
}

Too Much Milk: Solution #2

24

How about leave two notes

noteA = 1;
if (noteB == 0) {

if (milk == 0) {
milk++;

}
}
noteA = 0;

Alice Bob
noteB = 1;
if (noteA == 0) {

if (milk == 0) {
milk++;

}
}
noteB = 0;

Is this safe?
• Yes
• What if Alice executes noteA = 1. At the same time, Bob executes noteB = 1?

o I’m not getting milk, You’re getting milk
o Starvation

Too Much Milk: Solution #3

25

Monitoring note:

noteA = 1;
while (noteB == 1);
if (noteB == 0) {

if (milk == 0) {
milk++;

}
}
noteA = 0;

Alice Bob
noteB = 1;
if (noteA == 0) {

if (milk == 0) {
milk++;

}
}
noteB = 0;

Is this safe?
• Yes

Do it ensure liveness?

Where Are We Going with Synchronization?

26

Coordination happens across all layers

Shared Programs

Atomic Operator

Locks; Semaphores; Monitors; Atomic Read/Write

Programs

Mechanism

Hardware

Atomic Operations

27

Atomic Operation: an operation that always runs to completion
or not at all

• annot be stopped in the middle
• cannot be modified by someone else in the middle
• fundamental building block for synchronization

On most machines, memory references and assignments are
atomic

Many instructions are not atomic
• Double-precision floating point store often not atomic

Mechanisms For Building Critical Sections

28

Atomic read/write
• Can it be done?

Locks
• Primitive, minimal semantics, used to build others

Semaphores
• Basic, easy to get the hang of, but hard to program with

Monitors
• High-level, requires language support, operations implicit

Mutex with Atomic R/W: Try #1

29

while (true) {
while (turn != 1);
critical section
turn = 2;
outside of critical section

}

while (true) {
while (turn != 2);
critical section
turn = 1;
outside of critical section

}

This is called alternation

Does it satisfy the safety requirement?
• Yes

Does it satisfy the liveness requirement?
• No, T1 can go into infinite loop outside of the critical section preventing T2 from

entering

int turn = 1;
𝑇1 𝑇2

Mutex with Atomic R/W: Peterson’s Algorithm

30

while (true) {
 try1 = true;
 turn = 2;

while (try2 && turn != 1);
critical section
try1 = false;
outside of critical section

}

while (true) {
 try2 = true;
 turn = 1;

while (try1 && turn != 2);
critical section
try2 = false;
outside of critical section

}

Does it satisfy the liveness requirement?

Does it satisfy the safety requirement?

int turn = 1;
bool try1 = false, try2 = false;

𝑇1 𝑇2

Proof Sketch of Peterson’s Algorithm

31

while (true) {
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

1 try1 = true;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

2 turn = 2;
{ try1 ∧ (turn == 1 ∨ turn == 2) }

3 while (try2 && turn != 1);
{ try1 ∧ (turn == 1 ∨ ¬ try2 ∨
(try2 ∧ (line at 6 or at 7))) }

 critical section
4 try1 = false;
{¬ try1 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section
}

while (true) {
{¬ try2 ∧ (turn == 1 ∨ turn == 2) }

5 try2 = true;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

6 turn = 1;
{ try2 ∧ (turn == 1 ∨ turn == 2) }

7 while (try1 && turn != 2);
{ try2 ∧ (turn == 2 ∨ ¬ try1 ∨
(try1 ∧ (line at 2 or at 3))) }

 critical section
8 try2 = false;
 {¬ try2 ∧ (turn == 1 ∨ turn == 2) }

outside of critical section
}

𝑇1 𝑇2

Safety property: (line 4) ∧ (line 8) ⇒ (turn == 1 ∧ turn == 2)

int turn = 1;
bool try1 = false, try2 = false;

Locks

32

A lock is an object in memory providing two operations
• acquire(): wait until lock is free, then take it to enter a C.S
• release(): release lock to leave a C.S, waking up anyone waiting for it

Threads pair calls to acquire and release
• Between acquire/release, the thread holds the lock
• acquire does not return until any previous holder releases
• What can happen if the calls are not paired?

Locks can spin (a spinlock) or block (a mutex)
• Can break apart Peterson's to implement a spinlock

Too Much Milk: Solution #4

33

Solution #4: lock

lock.acquire();
if (milk == 0) {

milk++;
}
lock.release();

Alice Bob
lock.acquire();
if (milk == 0) {

milk++;
}
lock.release();

Fix Banking Problem with Lock

34

withdraw (account, amount) {
 acquire(lock)
 balance = get_balance(account);
 balance = balance – amount;
 put_balance(account, balance);
 release(lock);
 return balance;

}

Critical
Section

acquire(lock);
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);
release(lock);

put_balance(account, balance);
release(lock);

acquire(lock);

• What happens when green tries to acquire the lock?
• Why is the “return” outside the critical section? Is this ok?
• What happens when a third thread calls acquire?

Implementing Locks (1)

35

How do we implement locks? Here is one attempt:

struct lock {
 int held = 0;
}
void acquire (lock) {
 while (lock→held);
 lock→held = 1;
}

void release (lock) {
 lock→held = 0;
}

busy-wait (spin-wait)

for lock to be released

Called a spinlock because a thread spins waiting for the lock to be
released

Implementing Locks (2)

36

The while is not atomic:
• Two independent threads may both notice that a lock has been released

and thereby acquire it.
struct lock {
 int held = 0;
}
void acquire (lock) {
 while (lock→held);
 lock→held = 1;
}

void release (lock) {
 lock→held = 0;
}

A context switch can

occur here, causing a

race condition

Implementing Locks (3)

37

The problem is that the implementation of locks has critical sections, too!

How do we stop the recursion?

The implementation of acquire/release must be atomic
• An atomic operation is one which executes as though it could not be interrupted
• Code that executes “all or nothing”

How do we make them atomic?

Need help from hardware
• Atomic instructions (e.g., test-and-set)
• Disable/enable interrupts (prevents context switches)

Atomic Instructions: Test-And-Set

38

The semantics of test-and-set are:
• Record the old value
• Set the value to indicate available
• Return the old value

Hardware executes it atomically!

When executing test-and-set on “flag”
• What is value of flag afterwards if it was initially False? True?
• What is the return result if flag was initially False? True?

Other similar flavor atomic instructions: xchg, CAS

bool test_and_set(bool *flag) {
bool old = *flag;
*flag = True;
return old;

}

Using Test-And-Set to Implement Lock

39

Here is our lock implementation with test-and-set:
struct lock {
 int held = 0;
}
void acquire (lock) {
 while (test_and_set(&lock→held));
}

void release (lock) {
 lock→held = 0;
}

When will the while return? What is the value of held?

What about multiprocessors?

Implement it with xchg, Compare-And-Swap

Problems with Spinlocks

40

The problem with spinlocks is that they are wasteful
• If a thread is spinning on a lock, then the thread holding the lock cannot

make progress (on a uniprocessor)

How did the lock holder give up the CPU in the first place?
• Lock holder calls yield or sleep
• Involuntary context switch

Only want to use spinlocks as primitives to build higher-level
synchronization constructs

Disabling Interrupts

41

Another implementation of acquire/release is to disable interrupts:
struct lock {
 int held = 0;
}
void acquire (lock) {
 disable interrupts;
}

void release (lock) {
 enable interrupts;
}

Note that there is no state associated with the lock

Can two threads disable interrupts simultaneously?

On Disabling Interrupts

42

Disabling interrupts blocks notification of external events that could
trigger a context switch (e.g., timer)

• This is what Pintos uses as its primitive

In a “real” system, this is only available to the kernel
• Why?

Disabling interrupts is insufficient on a multiprocessor
• Interrupts are only disabled on a per-core basis
• Back to atomic instructions

Like spinlocks, only want to disable interrupts to implement higher-level
synchronization primitives

• Don’t want interrupts disabled between acquire and release

Summarize Where We Are

43

Goal: Use mutual exclusion to protect critical sections of code that
access shared resources

Method: Use locks (either spinlocks or disable interrupts)

Problem: Critical sections (CS) can be long

acquire(lock)

…

Critical section

…

release(lock)

Disabling Interrupts:
• Disabling interrupts for long

periods of time can miss or

delay important events (e.g.,

timer, I/O)

Spinlocks:
• Threads waiting to acquire lock

spin in test-and-set loop

• Wastes CPU cycles

• Longer the CS, the longer the

spin, greater the chance for
lock holder to be interrupted

Higher-Level Synchronization

44

Spinlocks and disabling interrupts are useful only for very short and
simple critical sections

• Wasteful otherwise
• These primitives are “primitive” – don’t do anything besides mutual exclusion

Need higher-level synchronization primitives that:
• Block waiters
• Leave interrupts enabled within the critical section

All synchronization requires atomicity

So we’ll use our “atomic” locks as primitives to implement them

Implementing Locks (4)

45

Block waiters, interrupts enabled in critical sections
struct lock {
 int held = 0;
 queue Q;
}
void acquire (lock) {
 Disable interrupts;
 while (lock→held) {
 put current thread on lock Q;
 block current thread;
 }
 lock→held = 1;
 Enable interrupts;

}

void release (lock) {
 Disable interrupts;
 if (Q) remove waiting thread;
 unblock waiting thread;
 lock→held = 0
 Enable interrupts;

}

Pintos threads/synch.c: sema_down/up

acquire(lock)

…

Critical section

…

release(lock)

Interrupts Disabled

Interrupts Disabled

Interrupts Enabled

Summary

46

Why we need synchronizations

Critical sections

Simple algorithms to implement critical sections

Locks

Lock implementations

Next Time…

47

Read Chapters 30,31

Shared Resources

48

Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering

Shared Resources

49

Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering

Shared Resources

50

Threads cooperate in multithreaded programs
• To share resources, access shared data structures
• To coordinate their execution

For correctness, we need to control this cooperation
• Thread schedule is non-deterministic (i.e., behavior changes when re-

run program)
o Scheduling is not under program control
o Threads interleave executions arbitrarily and at different rates

• Multi-word operations are not atomic
• Compiler/hardware instruction reordering

	Slide 1: Lecture 6: Synchronization Fall 2025
	Slide 2: Administrivia
	Slide 3: Recap: Scheduling
	Slide 4: Recap: Single and Multithreaded Processes
	Slide 5: What Resources Are Shared?
	Slide 6: What Resources Are Shared?
	Slide 7: Correctness with Concurrent Threads
	Slide 8: Motivated Example: Too Much Milk
	Slide 9: Too Much Milk… Operation?
	Slide 10: One More Exercise
	Slide 11: Concurrency Is Important and Hard
	Slide 12: Problem with Shared Resources
	Slide 13: Problem with Shared Resources
	Slide 14: Race Condition Example: Bank Account
	Slide 15: Race Condition Example Continued
	Slide 16: Interleaved Schedules
	Slide 17: How Interleaved Can It Get?
	Slide 18: Shared Resources
	Slide 19: What do We Need for Controlling Concurrency
	Slide 20: Critical Section Requirements
	Slide 21: Critical Section Requirements
	Slide 22: Too Much Milk: Solution #1
	Slide 23: Too Much Milk: Solution #1
	Slide 24: Too Much Milk: Solution #2
	Slide 25: Too Much Milk: Solution #3
	Slide 26: Where Are We Going with Synchronization?
	Slide 27: Atomic Operations
	Slide 28: Mechanisms For Building Critical Sections
	Slide 29: Mutex with Atomic R/W: Try #1
	Slide 30: Mutex with Atomic R/W: Peterson’s Algorithm
	Slide 31: Proof Sketch of Peterson’s Algorithm
	Slide 32: Locks
	Slide 33: Too Much Milk: Solution #4
	Slide 34: Fix Banking Problem with Lock
	Slide 35: Implementing Locks (1)
	Slide 36: Implementing Locks (2)
	Slide 37: Implementing Locks (3)
	Slide 38: Atomic Instructions: Test-And-Set
	Slide 39: Using Test-And-Set to Implement Lock
	Slide 40: Problems with Spinlocks
	Slide 41: Disabling Interrupts
	Slide 42: On Disabling Interrupts
	Slide 43: Summarize Where We Are
	Slide 44: Higher-Level Synchronization
	Slide 45: Implementing Locks (4)
	Slide 46: Summary
	Slide 47: Next Time…
	Slide 48: Shared Resources
	Slide 49: Shared Resources
	Slide 50: Shared Resources

