
Lecture 7: Semaphores and Monitors

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Administrivia

2

Project group member sign up due this Sunday
• Due this Sunday

Lab 1 overview session this Friday
• 2:30 - 4:00 PM, PHO305

Recap: Synchronization

3

Problem: concurrent threads accessed a shared
resource without any synchronization

• Know as a race condition

The execution of the two threads can be interleaved
balance = get_balance(account);
balance = balance – amount;

balance = get_balance(account);
balance = balance – amount;
put_balance(account, balance);

put_balance(account, balance);

Context switch

Recap: How to Protect Shared Resource?

4

1. Mutual exclusion (mutex)
• If one thread is in the critical section, then no other is

2. Progress
• If some thread T is not in the critical section, then T cannot prevent some

other thread S from entering the critical section
• A thread in the critical section will eventually leave it

3. Bounded waiting (no starvation)
• If some thread T is waiting on the critical section, then T will eventually

enter the critical section

Recap: How to Protect Shared Resource?

5

4. Performance
• The overhead of entering and exiting the critical section is small with

respect to the work being done within it

In summary:
• Safety property: nothing bad happens

o Mutex
• Liveness property: something good happens

o Progress, Bounded Waiting
• Performance requirement

o Performance

Note: correctness of concurrent is guarantee by design

Recap: Lock

6

Code that uses mutual exclusion to synchronize its execution is
called a critical section

A lock is an object in memory providing two operations
• acquire(): wait until lock is free, then take it to enter a C.S
• release(): release lock to leave a C.S, waking up anyone waiting for it

Recap: Higher-Level Synchronization

7

We looked at using locks to provide mutual exclusion

Locks work, but they have limited semantics
• Just provide mutual exclusion
• Wasteful

Instead, we need synchronization mechanisms that
• Block waiters, leave interrupts enabled in critical sections
• Provide semantics beyond mutual exclusion

Look at two common high-level mechanisms
• Semaphores: binary (mutex) and counting
• Monitors: mutexes and condition variables

Semaphores

8

Semaphores have a non-negative integer that supports the two operations:
• Semaphore::P() decrements, blocks until semaphore is open, a.k.a wait()
• Semaphore::V() increments, allows another thread to enter, a.k.a signal()
• That's it! No other operations – not even just reading its value

o Both P and V are after the Dutch word “Proberen” (to try), “Verhogen” (increment)

Semaphore safety property: the semaphore value is always greater than or
equal to 0

Using Semaphores to Fix Banking Problem

9

Use is similar to our locks, but semantics are different
struct lock {
 int value;
}

withdraw (account, amount) {
 acquire(lock)
 balance = get_balance(account);
 balance = balance – amount;
 put_balance(account, balance);
 release(lock);
 return balance;
}

struct Semaphore {
int value;
Queue q;

} S;

P(S);

v(S);

Critical
Section

P(S);
balance = get_balance(account);
balance = balance – amount;

…
v(s);

put_balance(account, balance);
v(s);

P(S);

P(S);

…
v(s);

Threads

block

It is undefined which thread

runs after a signal

Semaphores

10

Semaphores have a non-negative integer that supports the two operations:
• Semaphore::P() decrements, blocks until semaphore is open, a.k.a wait()
• Semaphore::V() increments, allows another thread to enter, a.k.a signal()
• That's it! No other operations – not even just reading its value

o Both P and V are after the Dutch word “Proberen” (to try), “Verhogen” (increment)

Semaphore safety property: the semaphore value is always greater than or
equal to 0

Semaphores are a kind of generalized lock
• First defined by Dijkstra in the “THE” system in 1968
• Main synchronization primitive used in original UNIX

Semaphores Implementation

11

Associated with each semaphore is a queue of waiting threads

When P() is called by a thread:
• If semaphore is open, thread continues
• If semaphore is closed, thread blocks on queue

Then V() opens the semaphore:
• If a thread is waiting on the queue, the thread is unblocked
• If no threads are waiting on the queue, the signal is remembered for the next thread

o In other words, V() has “history” (c.f., condition vars later)
o This “history” is a counter

Recall: Implementing Locks (4)

12

Block waiters, interrupts enabled in critical sections
struct lock {
 int held = 0;
 queue Q;
}
void acquire (lock) {
 Disable interrupts;
 while (lock→held) {
 put current thread on lock Q;
 block current thread;
 }
 lock→held = 1;
 Enable interrupts;

}

void release (lock) {
 Disable interrupts;
 if (Q) remove waiting thread;
 unblock waiting thread;
 lock→held = 0
 Enable interrupts;

}

Pintos threads/synch.c: sema_down/up

acquire(lock)

…

Critical section

…

release(lock)

Interrupts Disabled

Interrupts Disabled

Interrupts Enabled

Semaphore Types

13

Semaphores come in two types

Mutex semaphore (or binary semaphore)
• Represents single access to a resource
• Guarantees mutual exclusion to a critical section

Counting semaphore (or general semaphore)
• Represents a resource with many units available, or a resource that allows certain

kinds of unsynchronized concurrent access (e.g., reading)
• Multiple threads can pass the semaphore
• Number of threads determined by the semaphore “count”

o mutex has count = 1, counting has count = N

Readers/Writers Problem

14

Consider a shared database
• Two classes of users:

o Readers – never modify database
o Writers – read and modify database

• Is using a single lock on the whole database sufficient?
o Like to have many readers at the same time
o Only one writer at a time

write read

read

read

Readers/Writers Problem

15

Readers/Writers Problem:
• An object is shared among several threads
• Some threads only read the object, others only write it
• How do we control the access pattern?

table

Read row 1

Key Val1 Val2 Val3

1

2

Update row 1 Read row 1

Readers/Writers Problem

16

table

Read row 1

Key Val1 Val2 Val3

1 2 31

2

Read row 1

If we have multiple readers

Get (1,2,3) Get (1,2,3)

Readers/Writers Problem

17

table

Read row 1

Key Val1 Val2 Val3

1 2 31

2

Update row ’s Val2 to 1001Read row 1

If we have multiple readers and one writer

Get (1,100,3) Get (1,100,3)

Critical
Section100

Readers/Writers Problem

18

table

Key Val1 Val2 Val3

1 2 31

2

Update row 1

If we have multiple writers

Critical
Section100

Update row 1

Readers/Writers Problem

19

Readers/Writers Problem:
• An object is shared among several threads
• Some threads only read the object, others only write it
• We can allow multiple readers but only one writer

o Let 𝑟 be the number of readers, 𝑤 be the number of writers
o Safety: (𝑟 ≥ 0) ∧ (0 ≤ 𝑤 ≤ 1) ∧ ((𝑟 > 0) ⇒ (𝑤 = 0))

How can we use semaphores to implement this protocol?

Basic Readers/Writers Solution

20

Safety Constraints:
o Safety: (𝑟 ≥ 0) ∧ (0 ≤ 𝑤 ≤ 1) ∧ ((𝑟 > 0) ⇒ (𝑤 = 0))

Basic structure of a solution:
• Reader()

Wait until no writers
Access database
Check out – wake up a waiting writer

• Writer()
Wait until no active readers or writers
Access database
Check out – wake up waiting readers or writer

Start with…
• Semaphore w_or_r– exclusive writing or reading

Using Semaphores for Readers/Writers

21

w_or_r provides mutex between readers and writers
• writer wait/signal, reader wait/signal when readcount goes from 0 to 1 or from 1 to 0

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

Readers/Writers Notes

22

Consider the following sequence of operators:
• W1, R3, R4

Why do readers use mutex?

Why don't writers use mutex?

What if the signal() is above “if (readcount == 1)”?

Simulation of Readers/Writers Solution

23

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, R2 come along
w_or_r = 1, mutex = 1, readcount = 0

Simulation of Readers/Writers Solution

24

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, R2 come along
w_or_r = 0, mutex = 1, readcount = 0

Simulation of Readers/Writers Solution

25

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, R2 come along
w_or_r = 0, mutex = 0, readcount = 0

Simulation of Readers/Writers Solution

26

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, R2 come along
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

27

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, R2 come along
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

28

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, R2 come along
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

29

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 1, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

30

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

31

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 1, readcount = 1

Simulation of Readers/Writers Solution

32

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount =1

Simulation of Readers/Writers Solution

33

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount =2

Simulation of Readers/Writers Solution

34

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 2

Simulation of Readers/Writers Solution

35

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 1, readcount = 2

Simulation of Readers/Writers Solution

36

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 2

Simulation of Readers/Writers Solution

37

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

38

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

39

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

40

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

41

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 1, readcount = 1

Simulation of Readers/Writers Solution

42

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 1

Simulation of Readers/Writers Solution

43

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 0

Simulation of Readers/Writers Solution

44

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 0, mutex = 0, readcount = 0

Simulation of Readers/Writers Solution

45

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 1, mutex = 0, readcount = 0

Simulation of Readers/Writers Solution

46

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 1, mutex = 0, readcount = 0

Readers/Writers Notes

47

Consider the following sequence of operators:
• W1, R3, R4

Why do readers use mutex?

Why don't writers use mutex?

What if the signal() is above “if (readcount == 1)”?
reader() {

wait(&mutex); // lock readcount
readcount += 1; // one more reader
signal(&mutex); // unlock readcount
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
Read;

Simulation of Readers/Writers Solution

48

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 finishes, R1, R2 continue
w_or_r = 1, mutex = 1, readcount = 0

Is this safe?

Readers/Writers Notes

49

Is It Safe?
• Yes

If readers and writers are waiting, who goes first?

If Writer and Reader Are Waiting for Writer

50

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, W2 come along
w_or_r = 1, mutex = 1, readcount = 0

If Writer and Reader Are Waiting for Writer

51

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, W2 come along
w_or_r = 0, mutex = 1, readcount = 0

If Writer and Reader Are Waiting for Writer

52

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, W2 come along
w_or_r = 0, mutex = 1, readcount = 0

If Writer and Reader Are Waiting for Writer

53

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, W2 come along
w_or_r = 0, mutex = 0, readcount = 0

If Writer and Reader Are Waiting for Writer

54

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, W2 come along
w_or_r = 0, mutex = 0, readcount = 1

If Writer and Reader Are Waiting for Writer

55

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, W2 come along
w_or_r = 0, mutex = 0, readcount = 1

If Writer and Reader Are Waiting for Writer

56

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

W1 comes first, R1, W2 come along
w_or_r = 0, mutex = 0, readcount = 1

Who go first?

Readers/Writers Notes

57

If a writer is writing, where will readers be waiting?
• Yes

If readers and writers are waiting, who goes first?
• If waiting for writers, once a writer exits, all readers/writers can fall through

• Which reader gets to go first?

If Writer and Reader Are Waiting for Reader

58

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 1, mutex = 1, readcount = 0

If Writer and Reader Are Waiting for Reader

59

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 1, mutex = 0, readcount = 1

If Writer and Reader Are Waiting for Reader

60

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 1, mutex = 0, readcount = 1

If Writer and Reader Are Waiting for Reader

61

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 0, mutex =0, readcount = 1

If Writer and Reader Are Waiting for Reader

62

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 0, mutex =0, readcount = 1

Who go first?

Readers Always Go First

63

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 0, mutex =1, readcount = 1

Readers Always Go First

64

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 0, mutex =0, readcount = 2

Readers Always Go First

65

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 0, mutex =1, readcount = 2

Readers Always Go First

66

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 comes first, W1, R2 come along
w_or_r = 0, mutex =1, readcount = 2

Readers Always Go First

67

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 finishes, R2 blocks W1
w_or_r = 0, mutex =1, readcount = 2

What if we have R3,R4,R5… coming now?

Readers/Writers Notes

68

If a writer is writing, where will readers be waiting?
• Yes

If readers and writers are waiting, who goes first?
• If waiting for writers, once a writer exits, all readers/writers can fall through

• Which reader gets to go first?

Readers/Writers Notes

69

If a writer is writing, where will readers be waiting?
• Yes

If readers and writers are waiting, who goes first?
• If waiting for writers, once a writer exits, all readers/writers can fall through

• Which reader gets to go first?
• If waiting for readers, possible starvation for the writer

Semaphore Questions

70

Are there any problems that can be solved with counting semaphores that
cannot be solved with mutex semaphores?

• If a system only gives you mutex semaphore, can you use it to implement
counting semaphores?

Does it matter which thread is unblocked by a signal operation?

Tips for Pintos: Semaphore Implementation

71

To reference current thread: thread_current()

thread_block() puts the current thread to sleep

Lab 1 note:
• leverage semaphore instead of directly using thread_block()

void sema_down(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
while (sema->value == 0) {

list_push_back(&sema->waiters,
&thread_current()->elem);

thread_block();
}
sema->value--;
intr_set_level(old_level);

}

void sema_up(struct semaphore *sema)
{

enum intr_level old_level;
old_level = intr_disable();
if (!list_empty (&sema->waiters))

thread_unblock(list_entry(
list_pop_front(&sema->waiters),

 struct thread, elem));
sema->value++;
intr_set_level(old_level);

}

Tips for Pintos: thread_block()

72

thread_block() assumes the interrupts are disabled

This means we will have the thread sleep with interrupts disabled

Isn’t this bad?
• Shouldn’t we only disable interrupts when entering/leaving critical sections but keep interrupts enabled during

critical section?

/* Puts the current thread to sleep. This
function
must be called with interrupts turned off.*/
void thread_block ()
{
ASSERT (!intr_context ());
ASSERT (intr_get_level () == INTR_OFF);
thread_current ()->status = THREAD_BLOCKED;
schedule ();
}

Pick another
thread to run

Interrupts Re-enabled Right After Context Switch

73

thread_yield() {
Disable interrupts;
add current thread to ready_list;
schedule(); // context switch
Enable interrupts;

}

sema_down() {
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}
value--;
Enable interrupts;

}

[thread_yield]
Disable interrupts;
add current thread to ready_list;
schedule();

[thread_yield]
(Returns from schedule())
Enable interrupts;

…
[sema_down]
Disable interrupts;
while(value == 0) {

add current thread to waiters;
thread_block();

}

[thread_yield]
(Returns from schedule())
Enable interrupts;

Thread 1

Thread 2

Thread 2

Thread 1

Semaphore Summary

74

Semaphores can be used to solve any traditional sync. Problems

However, they have some drawbacks
• They are essentially shared global variables

o Can potentially be accessed anywhere in program
• No connection between the semaphore and the data controlled by the semaphore
• Used both for critical sections (mutual exclusion) and coordination (scheduling)

o Note that I had to use comments in the code to distinguish
• No control or guarantee of proper usage

Sometimes hard to use and prone to bugs

Semaphores are good but… Monitors are better!

75

Semaphores are a huge step up; just think of trying to do the reader/writer
with only loads and stores or lock

Problem is that semaphores are dual purpose:
• They are used for both mutex and scheduling constraints

Insight:
• Use locks for mutual exclusion and condition variables for scheduling constraints
• Use programming language support

Monitor

76

A programming language construct that controls access to shared data
• Synchronization code added by compiler, enforced at runtime
• Why is this an advantage?

A monitor is a module that encapsulates
• Shared data structures
• Procedures that operate on the shared data structures
• Synchronization between concurrent threads that invoke the procedures

Monitor account {
 double balance;

 double withdraw (amount) {
 balance = balance – amount;
 put_balance(account, balance);
 return balance;
}

Monitor

77

A programming language construct that controls access to shared data
• Synchronization code added by compiler, enforced at runtime
• Why is this an advantage?

A monitor is a module that encapsulates
• Shared data structures
• Procedures that operate on the shared data structures
• Synchronization between concurrent threads that invoke the procedures

A monitor protects its data from unstructured access

It guarantees that threads accessing its data through its procedures
interact only in legitimate ways

Bank Account Problem With Monitor

78

Monitor account {
 double balance;

 double withdraw (amount) {
 balance = balance – amount;
 put_balance(account, balance);
 return balance;
}

withdraw(amount)
 balance = balance – amount;

balance = balance – amount;
return balance;

return balance

withdraw(amount)

withdraw(amount)

balance = balance – amount;
return balance;

Threads

block

When first thread exits, another can

enter. Which one is undefined

Monitor Semantics

79

A monitor guarantees mutual exclusion
• Only one thread can execute any monitor procedure at any time

o The thread is “in the monitor”
• If a second thread invokes a monitor procedure when a first thread is already

executing one, it blocks
o So the monitor has to have a wait queue…

• If a thread within a monitor blocks, another one can enter

What are the implications in terms of parallelism in a monitor?

A monitor invariant is a safety property associated with the monitor
• It’s expressed over the monitored variables.
• It holds whenever a thread enters or exits the monitor.

Condition Variables

80

But what if a thread wants to wait for something inside the monitor?
• If we busy wait, it’s bad
• Even worse, no one can get in the monitor to make changes now!

A condition variable is associated with a condition needed for a thread to
make progress once it is in the monitor.

Monitor M {
 ... monitored variables
 Condition c;

 void enterMonitor (...) {
 if (extra property not true) wait(c); waits outside of the monitor's mutex
 do what you have to do
 if (extra property true) signal(c); brings in one thread waiting on condition
}

Condition Variables

81

Condition variables support three operations:
• Wait – release monitor lock, wait for C/V to be signaled

o So condition variables have wait queues, too
• Signal – wakeup one waiting thread
• Broadcast – wakeup all waiting threads

Condition variables are not boolean objects
• if (condition_variable) then… does not make sense
• if (num_resources == 0) then wait(resources_available) does
• We will explain the detail in next lecture

Condition Variables != Semaphores

82

Condition variables != semaphores
• Although their operations have the same names, they have entirely different

semantics (such is life, worse yet to come)
• However, they each can be used to implement the other

Access to the monitor is controlled by a lock
• wait() blocks the calling thread, and gives up the lock

o To call wait, the thread has to be in the monitor (hence has lock)
o Semaphore::wait just blocks the thread on the queue

• signal() causes a waiting thread to wake up
o If there is no waiting thread, the signal is lost
o Semaphore::signal increases the semaphore count, allowing future entry even if

no thread is waiting
o Condition variables have no history

Signal Semantics

83

Two flavors of monitors that differ in the scheduling semantics of signal()
• Hoare monitors (original)

o signal() immediately switches from the caller to a waiting thread
o The condition that the waiter was anticipating is guaranteed to hold when waiter

executes
o Signaler must restore monitor invariants before signaling

Hoare
if (!condition)
 wait(cond_var);

Condition definitely holds since we
just context switched from signal

Signal Semantics

84

• Mesa monitors (Mesa, Java)
o signal() places a waiter on the ready queue, but signaler continues inside monitor
o Condition is not necessarily true when waiter runs again

o Returning from wait() is only a hint that something changed
o Must recheck conditional case

Mesa
while (!condition)

wait(cond_var); condition might have been changed, if so, wait again

condition holds now

Hoare vs. Mesa Monitors

85

Tradeoffs
• Mesa monitors easier to use, more efficient

o Fewer context switches, easy to support broadcast
• Hoare monitors leave less to chance

o Easier to reason about the program

Summary

86

Semaphores
• wait()/signal()implement blocking mutual exclusion
• Also used as atomic counters (counting semaphores)
• Can be inconvenient to use

Monitors
• Synchronizes execution within procedures that manipulate encapsulated data shared

among procedures
o Only one thread can execute within a monitor at a time

• Relies upon high-level language support

Condition variables
• Used by threads as a synchronization point to wait for events
• Inside monitors, or outside with locks

	Slide 1: Lecture 7: Semaphores and Monitors Fall 2025
	Slide 2: Administrivia
	Slide 3: Recap: Synchronization
	Slide 4: Recap: How to Protect Shared Resource?
	Slide 5: Recap: How to Protect Shared Resource?
	Slide 6: Recap: Lock
	Slide 7: Recap: Higher-Level Synchronization
	Slide 8: Semaphores
	Slide 9: Using Semaphores to Fix Banking Problem
	Slide 10: Semaphores
	Slide 11: Semaphores Implementation
	Slide 12: Recall: Implementing Locks (4)
	Slide 13: Semaphore Types
	Slide 14: Readers/Writers Problem
	Slide 15: Readers/Writers Problem
	Slide 16: Readers/Writers Problem
	Slide 17: Readers/Writers Problem
	Slide 18: Readers/Writers Problem
	Slide 19: Readers/Writers Problem
	Slide 20: Basic Readers/Writers Solution
	Slide 21: Using Semaphores for Readers/Writers
	Slide 22: Readers/Writers Notes
	Slide 23: Simulation of Readers/Writers Solution
	Slide 24: Simulation of Readers/Writers Solution
	Slide 25: Simulation of Readers/Writers Solution
	Slide 26: Simulation of Readers/Writers Solution
	Slide 27: Simulation of Readers/Writers Solution
	Slide 28: Simulation of Readers/Writers Solution
	Slide 29: Simulation of Readers/Writers Solution
	Slide 30: Simulation of Readers/Writers Solution
	Slide 31: Simulation of Readers/Writers Solution
	Slide 32: Simulation of Readers/Writers Solution
	Slide 33: Simulation of Readers/Writers Solution
	Slide 34: Simulation of Readers/Writers Solution
	Slide 35: Simulation of Readers/Writers Solution
	Slide 36: Simulation of Readers/Writers Solution
	Slide 37: Simulation of Readers/Writers Solution
	Slide 38: Simulation of Readers/Writers Solution
	Slide 39: Simulation of Readers/Writers Solution
	Slide 40: Simulation of Readers/Writers Solution
	Slide 41: Simulation of Readers/Writers Solution
	Slide 42: Simulation of Readers/Writers Solution
	Slide 43: Simulation of Readers/Writers Solution
	Slide 44: Simulation of Readers/Writers Solution
	Slide 45: Simulation of Readers/Writers Solution
	Slide 46: Simulation of Readers/Writers Solution
	Slide 47: Readers/Writers Notes
	Slide 48: Simulation of Readers/Writers Solution
	Slide 49: Readers/Writers Notes
	Slide 50: If Writer and Reader Are Waiting for Writer
	Slide 51: If Writer and Reader Are Waiting for Writer
	Slide 52: If Writer and Reader Are Waiting for Writer
	Slide 53: If Writer and Reader Are Waiting for Writer
	Slide 54: If Writer and Reader Are Waiting for Writer
	Slide 55: If Writer and Reader Are Waiting for Writer
	Slide 56: If Writer and Reader Are Waiting for Writer
	Slide 57: Readers/Writers Notes
	Slide 58: If Writer and Reader Are Waiting for Reader
	Slide 59: If Writer and Reader Are Waiting for Reader
	Slide 60: If Writer and Reader Are Waiting for Reader
	Slide 61: If Writer and Reader Are Waiting for Reader
	Slide 62: If Writer and Reader Are Waiting for Reader
	Slide 63: Readers Always Go First
	Slide 64: Readers Always Go First
	Slide 65: Readers Always Go First
	Slide 66: Readers Always Go First
	Slide 67: Readers Always Go First
	Slide 68: Readers/Writers Notes
	Slide 69: Readers/Writers Notes
	Slide 70: Semaphore Questions
	Slide 71: Tips for Pintos: Semaphore Implementation
	Slide 72: Tips for Pintos: thread_block()
	Slide 73: Interrupts Re-enabled Right After Context Switch
	Slide 74: Semaphore Summary
	Slide 75: Semaphores are good but… Monitors are better!
	Slide 76: Monitor
	Slide 77: Monitor
	Slide 78: Bank Account Problem With Monitor
	Slide 79: Monitor Semantics
	Slide 80: Condition Variables
	Slide 81: Condition Variables
	Slide 82: Condition Variables != Semaphores
	Slide 83: Signal Semantics
	Slide 84: Signal Semantics
	Slide 85: Hoare vs. Mesa Monitors
	Slide 86: Summary

