
Lecture 8: Synchronization Exercises

Fall 2025                            

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci



Using Lock and Semaphores

2

We’ve looked at a simple example for using synchronization
• Mutual exclusion while accessing a bank account

Now let’s use locks and semaphores to a more interesting 
example

• Bounded Buffers



Producer-Consumer With a Bounded Buffer

3

Problem: a set of buffers shared by producer and consumer 
threads

• Producer inserts resources into the buffer set
• Output, disk blocks, memory pages, processes, etc.

• Consumer removes resources from the buffer set
• Whatever is generated by the producer

Producer and consumer execute at different rates
• No serialization of one behind the other
• Tasks are independent (easier to think about)
• The buffer set allows each to run without explicit handoff



Exercise 1.1: What Is the Safety Requirement?

4

BufferProducer
Consumer

https://app.sli.do/event/b8Co2oLQMSCHeYLA3DV8fr

https://app.sli.do/event/b8Co2oLQMSCHeYLA3DV8fr


Exercise 1.2: What Is the Safety Requirement?

5

BufferProducer
Consumer

Follow up question: 
• If 𝑛𝑐 is number consumed, 𝑛𝑝 number produced, and 𝑁 the size of the buffer, then: 



Exercise 1.3: Buffer Data Structure

6

BufferProducer
Consumer

In the producer–consumer problem, the buffer pool must keep track of three 
essential pieces of information (excluding synchronization variables like 
semaphores or locks). 
•  Write down the three variables that the buffer pool structure needs in 

order to manage items produced and consumed. Use proper variable 
names and types.

typedef struct buf {

   

} buf_t;



Exercise 2.1: Using Lock

7

We now want to implement a bounded buffer that supports a producer thread adding items 
and a consumer thread removing items.

Mutex buf_lock = 0

void Producer (item) {
  …
}

void Consumer (item) {
  …
}

https://app.sli.do/event/j2U3ksJWRBuvu1PCedBZbS

https://app.sli.do/event/j2U3ksJWRBuvu1PCedBZbS


Exercise 3.1: Semaphores

8

To implement a bounded buffer that supports a producer thread adding items and a 
consumer thread removing items, how many semaphores should we use?

https://app.sli.do/event/uoXX6nC5AJ9XEdEuFuaFtW

https://app.sli.do/event/uoXX6nC5AJ9XEdEuFuaFtW


Exercise 3.2: Using Semaphore

9

Implement a bounded buffer that supports a producer thread adding items and a 
consumer thread removing items, how many semaphores should we use?

Semaphore mutex(1); // mutual exclusion to shared set of buffers
  Semaphore empty(N); // count of empty buffers (all empty to start)
Semaphore full(0); // count of full buffers (none full to start)

void Producer (item) {
  …
}

void Consumer () {
  …
}



Exercise 4.1: Monitors for Bounded Buffer

10

To implement a bounded buffer that supports a producer thread adding items 
and a consumer thread removing items, 

• How many methods do we need?
• What variables live inside monitor?
• Write down method names and variables. Use proper variable/method 

names.

Monitor Bounded_buffer {
    …
}

https://app.sli.do/event/9NCMHGFLUXrfJdHezfhEeK

https://app.sli.do/event/9NCMHGFLUXrfJdHezfhEeK


Exercise 4.2: Monitor for Bounded Buffer

11

Monitor Bounded_buffer {
  Resource buffer[N];
  // Variables for indexing buffer
  // monitor invariant involves these vars
  Condition not_full; // space in buffer
  Condition not_empty; // value in buffer

  void put_resource (Resource R) {
    …
  }

  Resource get_resource() {
    …
  }

} // end monitor

Write down the methods implementation



More on Condition Variable 
and Monitor

12



Recap: Read-Write Problem

13

Readers/Writers Problem:
• An object is shared among several threads
• Some threads only read the object, others only write it
• We can allow multiple readers but only one writer

o Let 𝑟 be the number of readers, 𝑤 be the number of writers
o Safety: (𝑟 ≥  0)  ∧ (0 ≤  𝑤 ≤  1) ∧ ((𝑟 >  0)  ⇒  (𝑤 =  0))



Recap: Using Semaphores for Readers/Writers

14

w_or_r provides mutex between readers and writers
• writer wait/signal, reader wait/signal when readcount goes from 0 to 1 or from 1 to 0

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}



Starvation on the Writers

15

reader() {
wait(&mutex); // lock readcount
readcount += 1; // one more reader
if (readcount == 1)
 wait(&w_or_r);// synch w/ writers
signal(&mutex); // unlock readcount
Read;
wait(&mutex); // lock readcount
readcount -= 1; // one less reader
if (readcount == 0)
 signal(&w_or_r); // up for grabs
signal(&mutex); // unlock readcount

}

// exclusive writer or reader
Semaphore w_or_r(1);

// number of readers
int readcount = 0;

// mutual exclusion to readcount
Semaphore mutex(1);

writer() {
wait(&w_or_r); // lock out others
Write;
signal(&w_or_r);// up for grabs

}

R1 finishes, R2  blocks W1
w_or_r = 0, mutex =1, readcount = 2

What if we have R3,R4,R5… coming now?



Exercise 5.1: Monitor Readers and Writers

16

Using Mesa Monitor semantics:
• How many methods do we need?
• What variables live inside monitor?
• Write down method names and variables. Use proper variable/method 

names.

Monitor RW {
   
}

https://app.sli.do/event/6hStgPuq44F3R3MgprtFn9

https://app.sli.do/event/6hStgPuq44F3R3MgprtFn9


Exercise 5.2: Using Monitor

17

Using Mesa Monitor semantics:
•   Write down the methods

Monitor RW {
  int nr = 0, nw = 0;
  Condition canRead, canWrite;

  void StartRead() {
    …
  }

  void EndRead () {
    …
  }

void StartWrite() {
    …
  }

  void EndWrite () {
    … 
  }

} // end monitor



Next Time…

18

Read Chapter 32


	Slide 1: Lecture 8: Synchronization Exercises Fall 2025                            
	Slide 2: Using Lock and Semaphores
	Slide 3: Producer-Consumer With a Bounded Buffer
	Slide 4: Exercise 1.1: What Is the Safety Requirement?
	Slide 5: Exercise 1.2: What Is the Safety Requirement?
	Slide 6: Exercise 1.3: Buffer Data Structure
	Slide 7: Exercise 2.1: Using Lock
	Slide 8: Exercise 3.1: Semaphores
	Slide 9: Exercise 3.2: Using Semaphore
	Slide 10: Exercise 4.1: Monitors for Bounded Buffer
	Slide 11: Exercise 4.2: Monitor for Bounded Buffer
	Slide 12: More on Condition Variable and Monitor
	Slide 13: Recap: Read-Write Problem
	Slide 14: Recap: Using Semaphores for Readers/Writers
	Slide 15: Starvation on the Writers
	Slide 16: Exercise 5.1: Monitor Readers and Writers
	Slide 17: Exercise 5.2: Using Monitor
	Slide 18: Next Time…

