
Lecture 9: Deadlock

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Deadlock

2

Synchronization is a live gun
• We can easily shoot ourselves in the foot
• Incorrect use of synchronization can block all processes
• You have likely been intuitively avoiding this situation already

Example: Single-Lane Bridge Crossing

3

CA 140 to Yosemite National Park

4

Deadlock

5

Synchronization is a live gun
• We can easily shoot ourselves in the foot
• Incorrect use of synchronization can block all processes
• You have likely been intuitively avoiding this situation already

If one process tries to access a resource that a second process holds, and
vice-versa, they can never make progress

We call this situation deadlock, and we’ll look at:
• Definition and conditions necessary for deadlock
• Representation of deadlock conditions
• Approaches to dealing with deadlock

Bridge Crossing Example

6

Each segment of road can be viewed as a resource
• Car must own the segment under them
• Must acquire segment that they are moving into

Deadlock resolved if one car backs up (preempt resources and rollback)

Starvation: East-going traffic really fast → no one gets to go west

Deadlock Definition

7

Deadlock is a problem that can arise:
• When processes compete for access to limited resources
• When processes are incorrectly synchronized

Definition:
• Deadlock exists among a set of processes if every process is waiting for an event that

can be caused only by another process in the set.

Deadlock Example

8

void p1(void *ignored) {
lock(x);
lock(y);
/* critical section */
unlock(y);
unlock(x);

}

void p2(void *ignored) {
lock(y);
lock(x);
/* critical section */
unlock(x);
unlock(y);

}

Thread B:Thread A:

mutex_t x, y;

Deadlock Example: “Unlucky” Case

9

void p1(void *ignored) {
lock(x);

lock(y);
<unreachable>
/* critical section */
unlock(y);
unlock(x);

}

void p2(void *ignored) {

lock(y);

lock(x);
<unreachable>
/* critical section */
unlock(x);
unlock(y);

}

Thread B:Thread A:

mutex_t x, y;

Neither thread will get to run →Deadlock

stalled
stalled

Deadlock Example: “Lucky” Case

10

void p1(void *ignored) {
lock(x);
lock(y);

/* critical section */
unlock(y);
unlock(x);

}

void p2(void *ignored) {

lock(y);
lock(x);

/* critical section */
unlock(x);
unlock(y);

}

Thread B:Thread A:

mutex_t m1, m2;

Sometimes, schedule won’t trigger deadlock!

Deadlock Example

11

void p1(void *ignored) {
lock(x);
lock(y);
/* critical section */
unlock(y);
unlock(x);

}

void p2(void *ignored) {
lock(y);
lock(x);
/* critical section */
unlock(x);
unlock(y);

}

Thread B:Thread A:

mutex_t m1, m2;

This lock pattern exhibits non-deterministic deadlock
• Sometimes it happens, sometimes it doesn’t!

This is really hard to debug!

Deadlock Questions

12

Can you have deadlock w/o mutexes?

Deadlock Example: Memory Contention

13

void p1(void *ignored) {
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
/* do something */
Free(m2);
unlock(m1);

}

void p2(void *ignored) {
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
/* critical section */
unlock(m1);
unlock(m2);

}

Thread B:Thread A:

mutex_t m1, m2;

If only 2 MB of space, we get same deadlock situation

Deadlock Example: Memory Contention

14

void p1(void *ignored) {
AllocateOrWait(1 MB)

AllocateOrWait(1 MB)
/* do something */
Free(m2);
unlock(m1);

}

void p2(void *ignored) {

AllocateOrWait(1 MB)

AllocateOrWait(1 MB)
/* critical section */
unlock(m1);
unlock(m2);

}

Thread B:Thread A:

mutex_t m1, m2;

If only 2 MB of space, we get same deadlock situation

Deadlock Questions

15

Can you have deadlock w/o mutexes?
• Threads often block waiting for resources

o Locks
o Terminals
o Printers
o CD drives
o Memory

• Same problem with condition variables
o Suppose resource 1 managed by c1, resource 2 by c2
o A has 1, waits on c2, B has 2, waits on c1

• Threads often block waiting for other threads
o Pipes
o Sockets

• You can deadlock on any of these!

Dining Philosophers Problem

16

Philosophers spend their lives
alternating thinking and eating

Don’t interact with neighbors,
occasionally eat

• Need 2 chopsticks to eat
• Release both when done

Can only pick up 1 fork at a time

Dining Philosophers in Code

17

void philosopher(int i) /* i: philosopher id, 0 to 4
*/
{
 while (true) {
 think(); /* philosopher is thinking */
 take_fork(i); /* take left fork */
 take_fork((i + 1) % N); /* take right fork */
 eat(); /* yum-yum, spaghetti */
 put_fork(i); /*put left fork back on the table*/
 put_fork((i + 1) % N); /* put right fork back on
the table */
 }
}

What problem with this code?

void take_fork(int i) {
 forks[i].P();
 /*wait for ith fork's semaphore*/
}

void put_fork(int i) {
 forks[i].V();
 /*signal ith fork's semaphore*/
}

#define N 5 /* number of philosophers */
semaphore forks[N]; /* semaphores for each fork, each initialized to 1 (omitted) */

How to Avoid Deadlock Here?

18

Multiple solutions exist:

How to Avoid Deadlock Here?

19

Multiple solutions exist:

Simple one: allow at most 4 philosophers to sit simultaneously at the table

Another solution: define a partial order for resources (forks)
• Number the forks
• Philosopher must always pick up lower-numbered fork first and then higher-

numbered fork
• What happens if four philosophers all pick up their lower-numbered fork?
• Disadvantage

o Not always practical, when the complete list of all resources is not known in
advance

Third solution: all or none each time

2nd Attempt to Dining Philosopher Problem

20

Fix the previous code

void philosopher(int i) /* i: philosopher id, 0 to 4
*/
{
 while (true) {
 think(); /* philosopher is thinking */
 take_fork(i); /* take left fork */
 take_fork((i + 1) % N); /* take right fork */
 eat(); /* yum-yum, spaghetti */
 put_fork(i); /*put left fork back on the table*/
 put_fork((i + 1) % N); /* put right fork back on
the table */
 }
}

void take_fork(int i) {
 forks[i].P();
 /*wait for ith fork's semaphore*/
}

void put_fork(int i) {
 forks[i].V();
 /*signal ith fork's semaphore*/
}

#define N 5 /* number of philosophers */
semaphore forks[N]; /* semaphores for each fork, each initialized to 1 (omitted) */

2nd Attempt to Dining Philosopher Problem

21

#define N 5 /* number of philosophers */
#define LEFT (i+N-1) % N /* i's left neighbor */
#define RIGHT (i+1) % N /* i's right neighbor */
enum State {THINKING, HUNGRY, EATING}; /* a philosopher's status */
enum State states[N]; /* keep track of each philosopher's status */
semaphore mutex = 1; /* mutual exclusion for critical section */
semaphore phis[N]; /* semaphore for each philosopher, init to 0 */

void philosopher(int i) /* i: philosopher id, 0 to N-1 */
{

while (true) {
think(); /* philosopher is thinking */
take_forks(i); /* take both forks */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks */

}
}

2nd Attempt to Dining Philosopher Problem

22

void take_forks(int i) /* i: philosopher id, 0 to N-1 */
{
 mutex.P(); /* enter critical section */
 states[i] = HUNGRY; /* indicate philosopher is hungry */
 test(i); /* try to acquire two forks */
 mutex.V(); /* exit critical section */
 phis[i].P(); /* block if forks not acquired */
}

void put_forks(int i) { /* i: philosopher id, 0 to N-1 */
 mutex.P(); /* enter critical section */
 states[i] = THINKING; /* indicate i finished eating */
 test(LEFT); /* see if left neighbor can eat now */
 test(RIGHT); /* see if right neighbor can eat now */
 mutex.V(); /* exit critical section */
}

2nd Attempt to Dining Philosopher Problem

23

void test(int i) /* i: philosopher id, 0 to N-1 */
{
 if (states[i] == HUNGRY &&
 states[LEFT] != EATING &&
 states[RIGHT] != EATING) {
 states[i] = EATING; /* philosopher I can eat now */
 phis[i].V(); /* signal i to proceed */
 }
}

Notes for the Solution

24

What is the purpose of states array?
• given that already have the semaphore array?
• A semaphore doesn’t have operations for checking its value!

What if we don’t use the mutex semaphore?

Why the semaphore array is for each philosopher?
• Our first attempt uses semaphore array for each fork

What if we put phis[i].P(); inside the critical section?

What if we don’t call the two test in put_forks?

Conditions for Deadlock

25

• Mutual exclusion – At least one resource must be held in a non sharable mode

• Hold and wait – There must be one process holding one resource and waiting for
another resource

• No preemption – Resources cannot be preempted (critical sections cannot be
aborted externally)

• Circular wait – There must exist a set of processes [P1, P2, P3,…,Pn] such that P1 is
waiting for P2, P2 for P3, etc.

Questions

26

How to detect deadlocks?

Conditions for Deadlock

27

View system as graph
• Processes and Resources are nodes
• Resource Requests and Assignments are edges

Resource-Allocation Graph:
• A set of Threads 𝑇1, 𝑇2, . . . , 𝑇𝑛

• Resource types 𝑅1, 𝑅, . . . , 𝑅𝑛
o CPU cycles, memory space, I/O devices

• Each resource type 𝑅𝑖 has 𝑊𝑖 instances
• Each thread utilizes a resource as follows:

o Request() / Use() / Release()

• Thread 𝑇𝑖 requesting resource 𝑅𝑗:

• Thread 𝑇𝑖 holding instance of 𝑅𝑗:

𝑅1

𝑅1

𝑇1

𝑇1

𝑅1

𝑇1

𝑅1

Resource-Allocation Graph Example

28

𝑅1 𝑅2

𝑅3
𝑅4

𝑇1 𝑇2 𝑇3

Resource-Allocation Graph Example

29

𝑅1 𝑅2

𝑅3
𝑅4

𝑇1 𝑇2 𝑇3

Is This Deadlock?

30

𝑅2

𝑇1

𝑇2

𝑇3

𝑅1

𝑇4

Deadlock Detection

31

If graph has no cycles ⇒ no deadlock

If graph contains a cycle
• Definitely deadlock if only one instance per resource (waits-for graph (WFG))
• Otherwise, maybe deadlock, maybe not

Traverse the resource graph is expensive
• Many processes and resources to traverse

Only invoke detection algorithm periodically

Deal with Deadlock

32

There are four approaches for dealing with deadlock:
• Ignore it
• Prevention: write your code to make it impossible for deadlock to

happen
• Avoidance – control allocation of resources
• Recovery – look for a cycle in dependencies

Prevent by Eliminating One Condition

33

1. Mutual exclusion
• Buy more resources, split into pieces, or virtualize to make "infinite" copies
• Give illusion of infinite resources (e.g. virtual memory)

Virtually Infinite Resources

34

void p1(void *ignored) {
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
/* do something */
Free(m2);
unlock(m1);

}

void p2(void *ignored) {
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
/* critical section */
unlock(m1);
unlock(m2);

}

Thread B:Thread A:

With virtual memory we have “infinite” space so everything will
just succeed, thus above example won’t deadlock

Prevent by Eliminating One Condition

35

1. Mutual exclusion
• Buy more resources, split into pieces, or virtualize to make "infinite" copies
• Give illusion of infinite resources (e.g. virtual memory)

2. Hold and wait
• Wait on all resources at once (must know in advance)

3. No preemption
• Physical memory: virtualized with VM, can take physical page away and give to any

process!

4. Circular wait
• Partial ordering of resources

o e.g., always acquire mutex m1 before m2
o Usually design locking discipline for application this way

Request Resource in Partial Order

36

void p1(void *ignored) {
lock(x);
lock(y);
/* critical section */
unlock(y);
unlock(x);

}

void p2(void *ignored) {
lock(y);
lock(x);
/* critical section */
unlock(x);
unlock(y);

}

Thread B:Thread A: mutex_t x, y;

void p2(void *ignored) {
lock(x);
lock(y);
/* critical section */
unlock(x);
unlock(y);

}

Thread B:Thread A:
void p1(void *ignored) {

lock(x);
lock(y);
/* critical section */
unlock(y);
unlock(x);

}

Prevent by Eliminating One Condition

37

4. Circular wait
• Partial ordering of resources

o e.g., always acquire mutex m1 before m2
o Usually design locking discipline for application this way

• Make all threads request everything they’ll need at the beginning.
o Problem: Predicting future is hard, tend to over-estimate resources

Recovering from Deadlock

38

Terminate processes
• Abort all deadlocked processes

o Processes need to start over again
• Abort one process at a time until cycle is eliminated

o System needs to rerun detection after each abort

Preempt resources (force their release)
• Need to select process and resource to preempt
• Need to rollback process to previous state
• Need to prevent starvation

Roll back actions of deadlocked threads
• Common technique in databases (transactions)

Avoid Deadlock

39

Idea solution: When a process requests a resource, OS only grant it
when:

• The process can obtain all resources it needs in future requests
• Information in advance about what resources will be needed by processes to

guarantee that deadlock will not happen

Tough

• Hard to determine all resources needed in advance
• Good theoretical problem, not as practical to use

Three States

40

Safe state
• System can delay resource acquisition to prevent deadlock

Unsafe state
• No deadlock yet…
• But threads can request resources in a pattern that unavoidably leads to deadlock

Deadlocked state
• There exists a deadlock in the system
• Also considered “unsafe”

Deadlock avoidance: prevent system
from reaching an unsafe state

Banker’s Algorithm

41

1. Each process must state its maximum resource demand
• OS tracks available resource, maximum demand of each process

2. When a process requests resources:
• OS check whether the request would lead to an unsafe state

10 units of resource A

P1: Max = 7, Allocated = 3
P2: Max = 5, Allocated = 2
P3: Max = 3, Allocated = 2

Deadlock Summary

42

Deadlock occurs when processes are waiting on each other and cannot
make progress

• Cycles in Resource Allocation Graph (RAG)

Deadlock requires four conditions
• Mutual exclusion, hold and wait, no resource preemption, circular wait

Four approaches to dealing with deadlock:
• Ignore it – Living life on the edge
• Prevention – Make one of the four conditions impossible
• Avoidance – Banker’s Algorithm (control allocation)
• Detection and Recovery – Look for a cycle, preempt or abort

Condition Vars & Locks

43

C/Vs are also used without monitors in conjunction with locks
• void cond_init (cond_t *, ...);
• void cond_wait (cond_t *c, mutex_t *m);

o Atomically unlock mand sleep until csignaled
o Then re-acquire m and resume executing

• void cond_signal (cond_t *c);
• void cond_broadcast (cond_t *c);

o Wake one/all threads waiting on c

Condition Vars & Locks

44

C/Vs are also used without monitors in conjunction with locks

A monitor ≈ a module whose state includes a C/V and a lock
• Difference is syntactic; with monitors, compiler adds the code

It is “just as if” each procedure in the module calls acquire() on entry
and release() on exit

• But can be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal
on independent conditions

Condition Vars & Locks

45

C/Vs are also used without monitors in conjunction with locks

A monitor ≈ a module whose state includes a C/V and a lock
• Difference is syntactic; with monitors, compiler adds the code

It is “just as if” each procedure in the module calls acquire() on entry
and release() on exit

• But can be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal
on independent conditions

Condition Vars & Locks

46

Why must cond_wait both release mutex_t & sleep?
• void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);
cond_wait(¬_full);
mutex_lock(&mutex);

}

Condition Vars & Locks

47

Why must cond_wait both release mutex_t & sleep?
• void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);

cond_wait(¬_full);
mutex_lock(&mutex);

}

while (count == BUFFER_SIZE) {

mutex_unlock(&mutex);
count --;
cond_signal(¬_full);
mutex_lock(&mutex);

}

Consumer:Producer:

Monitors and Java

48

A lock and condition variable are in every Java object
• No explicit classes for locks or condition variables

Every object is/has a monitor
• At most one thread can be inside an object’s monitor
• A thread enters an object’s monitor by

o Executing a method declared “synchronized”
o Executing the body of a “synchronized” statement

• The compiler generates code to acquire the object’s lock at the start of the method
and release it just before returning
o The lock itself is implicit, programmers do not worry about it

Condition Vars & Locks

49

Every object can be treated as a condition variable
• Half of Object’s methods are for synchronization!

Take a look at the Java Object class:
• Object.wait(*) is Condition::wait()
• Object.notify() is Condition::signal()
• Object.notifyAll() is Condition::broadcast()

Next time…

50

Read Chapter 15, 16, 18

	Slide 1: Lecture 9: Deadlock Fall 2025
	Slide 2: Deadlock
	Slide 3: Example: Single-Lane Bridge Crossing
	Slide 4
	Slide 5: Deadlock
	Slide 6: Bridge Crossing Example
	Slide 7: Deadlock Definition
	Slide 8: Deadlock Example
	Slide 9: Deadlock Example: “Unlucky” Case
	Slide 10: Deadlock Example: “Lucky” Case
	Slide 11: Deadlock Example
	Slide 12: Deadlock Questions
	Slide 13: Deadlock Example: Memory Contention
	Slide 14: Deadlock Example: Memory Contention
	Slide 15: Deadlock Questions
	Slide 16: Dining Philosophers Problem
	Slide 17: Dining Philosophers in Code
	Slide 18: How to Avoid Deadlock Here?
	Slide 19: How to Avoid Deadlock Here?
	Slide 20: 2nd Attempt to Dining Philosopher Problem
	Slide 21: 2nd Attempt to Dining Philosopher Problem
	Slide 22: 2nd Attempt to Dining Philosopher Problem
	Slide 23: 2nd Attempt to Dining Philosopher Problem
	Slide 24: Notes for the Solution
	Slide 25: Conditions for Deadlock
	Slide 26: Questions
	Slide 27: Conditions for Deadlock
	Slide 28: Resource-Allocation Graph Example
	Slide 29: Resource-Allocation Graph Example
	Slide 30: Is This Deadlock?
	Slide 31: Deadlock Detection
	Slide 32: Deal with Deadlock
	Slide 33: Prevent by Eliminating One Condition
	Slide 34: Virtually Infinite Resources
	Slide 35: Prevent by Eliminating One Condition
	Slide 36: Request Resource in Partial Order
	Slide 37: Prevent by Eliminating One Condition
	Slide 38: Recovering from Deadlock
	Slide 39: Avoid Deadlock
	Slide 40: Three States
	Slide 41: Banker’s Algorithm
	Slide 42: Deadlock Summary
	Slide 43: Condition Vars & Locks
	Slide 44: Condition Vars & Locks
	Slide 45: Condition Vars & Locks
	Slide 46: Condition Vars & Locks
	Slide 47: Condition Vars & Locks
	Slide 48: Monitors and Java
	Slide 49: Condition Vars & Locks
	Slide 50: Next time…

