CE 440 Introduction to Operating System

Lecture 9: Deadlock
Fall 2025

Prof. Yigong Hu

BOSTON
UNIVERSITY

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Deadlock

Synchronization is a live gun
* We can easily shoot ourselves in the foot
* Incorrect use of synchronization can block all processes
* You have likely been intuitively avoiding this situation already

Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park

Deadlock

Synchronization is a live gun
* We can easily shoot ourselves in the foot
* Incorrect use of synchronization can block all processes
* You have likely been intuitively avoiding this situation already

If one process tries to access aresource that a second process holds, and
vice-versa, they can never make progress

We call this situation deadlock, and we’ll look at:
* Definition and conditions necessary for deadlock
* Representation of deadlock conditions
* Approaches to dealing with deadlock

Bridge Crossing Example

Each segment of road can be viewed as a resource
* Car must own the segment under them
 Must acquire segment that they are moving into OW"E G

Deadlock resolved if one car backs up (preempt resources and rollback)

Starvation: East-going traffic really fast — no one gets to go west

Deadlock Definition

Deadlock is a problem that can arise:
* When processes compete for access to limited resources
* When processes are incorrectly synchronized

Definition:
* Deadlock exists among a set of processes if every process is waiting for an event that
can be caused only by another process in the set.

Deadlock Example

mutex t x, vy,

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x); lock(y);
lock(y); lock(x);
/* critical section */ /* critical section */
unlock(y); unlock(x);
unlock(x); unlock(y);
} }

Deadlock Example: “Unlucky” Case

mutex t x, vy,

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x);
lock(y);
stalled
<unreachable> stalled
/* critical section */ <unreachable>
unlock(y); /* critical section */
unlock(x); unlock(x);
} unlock(y);
}

Neither thread will get to run -»Deadlock

Deadlock Example: “Lucky” Case

mutex_t ml, m2;

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x);
lock(y);
lock(y);
lock(x);

/* critical section */
unlock(y);
unlock(x);

¥

/* critical section */
unlock(x);
unlock(y);

Sometimes, schedule won’t trigger deadlock!

10

Deadlock Example

mutex_t ml, m2;

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x); lock(y);
lock(y); lock(x);
/* critical section */ /* critical section */
unlock(y); unlock(x);
unlock(x); unlock(y);
} }

This lock pattern exhibits non-deterministic deadlock
* Sometimes it happens, sometimes it doesn’t!

This is really hard to debug!

11

Deadlock Questions

Can you have deadlock w/o mutexes?

12

Deadlock Example: Memory Contention

mutex_t ml, m2;

Thread A: Thread B:

void pl(void *ignored) { void p2(void *ignored) {
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
/* do something */ /* critical section */
Free(m2); unlock(ml);
unlock(ml); unlock(m2);

} }

If only 2 MB of space, we get same deadlock situation

13

Deadlock Example: Memory Contention

mutex_t ml, m2;

Thread A: Thread B:

void pl(void *ignored) {

void p2(void *ignored) {
AllocateOrWait(1 MB)

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)

/* do something */ AllocateOrWait(1 MB)

Free(m2); /* critical section */
unlock(ml); unlock(ml);
} unlock(m2);

If only 2 MB of space, we get same deadlock situation

14

Deadlock Questions

Can you have deadlock w/o mutexes?

* Threads often block waiting for resources
o Locks
o Terminals
o Printers
o CD drives
o Memory
* Same problem with condition variables
o Suppose resource 1 managed by c7, resource 2 by c2
o Ahas1,waitson c2, B has 2, waitson c1
* Threads often block waiting for other threads
o Pipes
o Sockets
* You can deadlock on any of these!

15

Dining Philosophers Problem

Philosophers spend their lives
alternating thinking and eating

Don’t interact with neighbors,

occasionally eat
* Need 2 chopsticks to eat
* Release both when done

Can only pick up 1 fork at a time

16

Dining Philosophers in Code

#define N 5 /* number of philosophers */
semaphore forks[N]; /* semaphores for each fork, each initialized to 1 (omitted) */

void philosopher(int i) /* i: philosopher id, @ to 4

*/ void take fork(int i) {
{ forks[i].P();
while (true) { /*wait for ith forkR's semaphore*/

think(); /* philosopher 1is thinking */ }
take fork(i); /* take Lleft fork */
take fork((i + 1) % N); /* take right fork */ void put_ fork(int i) {
eat(); /* yum-yum, spaghetti */ forks[i].V();
put_fork(i); /*put Left fork back on the table*/ /*signal ith forkR's semaphore*/
put_fork((i + 1) % N); /* put right fork back on }

the table */

}
}

What problem with this code?

17

How to Avoid Deadlock Here?

Multiple solutions exist:

18

How to Avoid Deadlock Here?

Multiple solutions exist:
Simple one: allow at most 4 philosophers to sit simultaneously at the table

Another solution: define a partial order for resources (forks)
* Numberthe forks
* Philosopher must always pick up lower-numbered fork first and then higher-
numbered fork
* What happens if four philosophers all pick up their lower-numbered fork?
* Disadvantage
o Not always practical, when the complete list of all resources is not known in
advance

Third solution: all or none each time

19

2"d Attempt to Dining Philosopher Problem

Fix the previous code

#define N 5 /* number of philosophers */
semaphore forks[N]; /* semaphores for each fork, each initialized to 1 (omitted) */

void philosopher(int i) /* i: philosopher id, © to 4

*/ void take fork(int i) {
{ forks[i].P();
while (true) { /*wait for ith fork's semaphore*/

think(); /* philosopher 1is thinking */ }
take _fork(i); /* take Left fork */
take fork((i + 1) % N); /* take right fork */ void put_ fork(int i) {
eat(); /* yum-yum, spaghetti */ forks[i].V();
put_fork(i); /*put Left fork back on the table*/ /*signal 1th fork's semaphore*/
put_fork((i + 1) % N); /* put right fork back on }

the table */

}
}

20

2" Attempt to Dining Philosopher Problem

#define N 5 /* number of philosophers */

#define LEFT (i+N-1) % N /* 1's left neighbor */

#define RIGHT (i+l1l) % N /* 1's right neighbor */

enum State {THINKING, HUNGRY, EATING}; /* a philosopher's status */
enum State states[N]; /* keep track of each philosopher's status */
semaphore mutex = 1; /* mutual exclusion for critical section */
semaphore phis[N]; /* semaphore for each philosopher, init to @ */

void philosopher(int i) /* 1: philosopher id, © to N-1 */
{
while (true) {
think(); /* philosopher 1is thinking */
take forks(i); /* take both forks */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks */

21

2"d Attempt to Dining Philosopher Problem

void take forks(int i) /* 1: philosopher id, © to N-1 */
{
mutex.P(); /* enter critical section */
states[i] = HUNGRY; /* indicate philosopher is hungry */
test(i); /* try to acquire two forks */
mutex.V(); /* exit critical section */
phis[i].P(); /* block 1if forks not acquired */
}

void put_forks(int i) { /* i: philosopher id, 6 to N-1 */
mutex.P(); /* enter critical section */
states[i] = THINKING; /* indicate 1 finished eating */
test(LEFT); /* see 1if Left neighbor can eat now */
test(RIGHT); /* see 1if right neighbor can eat now */
mutex.V(); /* exit critical section */

22

2"d Attempt to Dining Philosopher Problem

void test(int i) /* 1: philosopher 1d, 6 to N-1 */
{
if (states[i] == HUNGRY &&
states[LEFT] != EATING &&
states[RIGHT] != EATING) {
states[1] = EATING; /* philosopher I can eat now */
phis[i].V(); /* signal 1 to proceed */

23

Notes for the Solution

What is the purpose of states array?

* given that already have the semaphore array?
* A semaphore doesn’t have operations for checking its value!

What if we don’t use the mutex semaphore?

Why the semaphore array is for each philosopher?
* Ourfirst attempt uses semaphore array for each fork

What if we put phis[i].P(); inside the critical section?

What if we don’t call the two test in put_forks?

24

Conditions for Deadlock

Mutual exclusion — At least one resource must be held in a non sharable mode

Hold and wait — There must be one process holding one resource and waiting for
another resource

No preemption — Resources cannot be preempted (critical sections cannot be
aborted externally)

Circular wait - There must exist a set of processes [P1, P2, P3,...,Pn] such that P1 is
waiting for P2, P2 for P3, etc.

25

How to detect deadlocks?

Questions

26

Conditions for Deadlock

View system as graph
* Processes and Resources are nodes
* Resource Requests and Assignments are edges

Resource-Allocation Graph:
* AsetofThreads Ty, 15,...,T, @

* ResourcetypesR{,R,...,R, n

o CPU cycles, memory space, I/O devices 1 R,

* Eachresource type R; has W; instances

oo
Each thread utilizes a resource as follows: [25
o Request() / Use() / Release() R,

. ORF
* Thread T; requesting resource R;: oo

* Thread T; holding instance of Rj: @4—"5

oo

27

Resource-Allocation Graph Example

Resource-Allocation Graph Example

@éx E\é;

R4

O
(|

Is This Deadlock?

@

Deadlock Detection

If graph has no cycles = no deadlock

If graph contains a cycle
* Definitely deadlock if only one instance per resource (waits-for graph (WFG))
* Otherwise, maybe deadlock, maybe not

Traverse the resource graph is expensive
¢ Many Processes and resources to traverse

Only invoke detection algorithm periodically

31

Deal with Deadlock

There are four approaches for dealing with deadlock:

* Ignore it
* Prevention: write your code to make it impossible for deadlock to
nappen

* Avoidance - control allocation of resources
* Recovery-look for a cycle in dependencies

32

1.

Prevent by Eliminating One Condition

Mutual exclusion
* Buy more resources, split into pieces, or virtualize to make "infinite" copies
* Giveillusion of infinite resources (e.g. virtual memory)

33

Virtually Infinite Resources

Thread A: Thread B:

void pl(void *ignored) { void p2(void *ignored) {
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
/* do something */ /* critical section */
Free(m2); unlock(ml);
unlock(ml); unlock(m2);

} }

With virtual memory we have “infinite” space so everything will
just succeed, thus above example won’t deadlock

Prevent by Eliminating One Condition

1. Mutual exclusion
* Buy more resources, split into pieces, or virtualize to make "infinite" copies
* Giveillusion of infinite resources (e.g. virtual memory)

2. Hold and wait
* Wait on all resources at once (must know in advance)

3. No preemption
* Physical memory: virtualized with VM, can take physical page away and give to any
process!

4. Circularwait
 Partial ordering of resources
o e.g.,always acquire mutex m7 before m2
o Usually design locking discipline for application this way

35

Request Resource in Partial Order

mutex t x, vy;

unlock(x);

Thread A: Thread B:
¥ void pl(void *ignored) { void p2(void *ignored) {
N lock(x); lock(y);
lock(y); lock(x);
/* critical section */ /* critical section */
unlock(y); unlock(x);
unlock(x); unlock(y);
Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x); lock(x);
lock(y); lock(y);
/* critical section */ /* critical section */
unlock(y); unlock(x);

unlock(y);

36

Prevent by Eliminating One Condition

4. Circular wait
 Partial ordering of resources
o e.g.,always acquire mutex m171 before m2
o Usually design locking discipline for application this way
* Make all threads request everything they’ll need at the beginning.
o Problem: Predicting future is hard, tend to over-estimate resources

37

Recovering from Deadlock

Terminate processes
 Abort all deadlocked processes
o Processes need to start over again
* Abort one process at a time until cycle is eliminated
o System needs to rerun detection after each abort

Preempt resources (force their release)
* Need to select process and resource to preempt
* Need torollback process to previous state
* Need to prevent starvation

Roll back actions of deadlocked threads
* Commontechnique in databases (transactions)

38

Avoid Deadlock

Idea solution: When a process requests a resource, OS only grant it

when:
* The process can obtain all resources it needs in future requests

* [nformation in advance about what resources will be needed by processes to
guarantee that deadlock will not happen

Tough
e Hard to determine all resources needed in advance
 Good theoretical problem, not as practical to use

39

Three States

Safe state
 System can delay resource acquisition to prevent deadlock

Deadlock avoidance: prevent system
from reaching an unsafe state

Unsafe state

* No deadlockyet...
* Butthreads canrequest resources in a pattern that unavoidably leads to deadlock

Deadlocked state

* There exists a deadlock in the system
* Also considered “unsafe”

40

Banker’s Algorithm

1. Each process must state its maximum resource demand
e OStracks available resource, maximum demand of each process

2. When a process requests resources:
e OScheckwhetherthe request would lead to an unsafe state

10 units of resource A

P1: Max=7, Allocated = 3
P2: Max =5, Allocated = 2
P3: Max = 3, Allocated = 2

Deadlock Summary

Deadlock occurs when processes are waiting on each other and cannot

make progress
* Cyclesin Resource Allocation Graph (RAG)

Deadlock requires four conditions
* Mutual exclusion, hold and wait, no resource preemption, circular wait

Four approaches to dealing with deadlock:
* lgnore it - Living life on the edge
* Prevention — Make one of the four conditions impossible
* Avoidance - Banker’s Algorithm (control allocation)
* Detection and Recovery — Look for a cycle, preempt or abort

42

Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks
* void cond_init(cond_t* ...);
* void cond_wait (cond_t *c, mutex_t *m);
o Atomically unlock mand sleep until csignaled
o Thenre-acquire m and resume executing
* void cond_signal (cond_t *c);
* void cond_broadcast (cond_t *c);
o Wake one/all threads waiting on c

43

Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks

A monitor ® a module whose state includes a C/V and a lock
 Difference is syntactic; with monitors, compiler adds the code

Itis “just as if” each procedure in the module calls acquire() on entry
and release() on exit

* Butcan be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal
on independent conditions

44

Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks

A monitor ® a module whose state includes a C/V and a lock
 Difference is syntactic; with monitors, compiler adds the code

Itis “just as if” each procedure in the module calls acquire() on entry
and release() on exit

* Butcan be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal
on independent conditions

45

Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep?
* void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

}

while (count == BUFFER_SIZE) {

mutex_unlock(&mutex);
cond_wait(¬_full);
mutex_lock(&mutex);

46

Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep?
* void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

Producer: Consumer:

while (count == BUFFER_SIZE) { while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);

mutex_unlock(&mutex);
count --;

cond_signal(¬_ full);

cond_wait(¬_full); mutex_lock(&mutex);
mutex_lock(&mutex); }

Monitors and Java

A lock and condition variable are in every Java object
* No explicit classes for locks or condition variables

Every object is/has a monitor
* Atmostonethread can beinside an object’s monitor
* Athread enters an object’s monitor by
o Executing a method declared “synchronized”
o Executing the body of a “synchronized” statement

* The compiler generates code to acquire the object’s lock at the start of the method
and release it just before returning

o Thelockitselfis implicit, programmers do not worry about it

48

Condition Vars & Locks

Every object can be treated as a condition variable
* Half of Object’s methods are for synchronization!

Take a look at the Java Object class:
* Object.wait(*) is Condition::wait()
* Object.notify() is Condition::signal()
* Object.notifyAll() is Condition::broadcast()

49

Read Chapter 15, 16, 18

Next time...

50

	Slide 1: Lecture 9: Deadlock Fall 2025
	Slide 2: Deadlock
	Slide 3: Example: Single-Lane Bridge Crossing
	Slide 4
	Slide 5: Deadlock
	Slide 6: Bridge Crossing Example
	Slide 7: Deadlock Definition
	Slide 8: Deadlock Example
	Slide 9: Deadlock Example: “Unlucky” Case
	Slide 10: Deadlock Example: “Lucky” Case
	Slide 11: Deadlock Example
	Slide 12: Deadlock Questions
	Slide 13: Deadlock Example: Memory Contention
	Slide 14: Deadlock Example: Memory Contention
	Slide 15: Deadlock Questions
	Slide 16: Dining Philosophers Problem
	Slide 17: Dining Philosophers in Code
	Slide 18: How to Avoid Deadlock Here?
	Slide 19: How to Avoid Deadlock Here?
	Slide 20: 2nd Attempt to Dining Philosopher Problem
	Slide 21: 2nd Attempt to Dining Philosopher Problem
	Slide 22: 2nd Attempt to Dining Philosopher Problem
	Slide 23: 2nd Attempt to Dining Philosopher Problem
	Slide 24: Notes for the Solution
	Slide 25: Conditions for Deadlock
	Slide 26: Questions
	Slide 27: Conditions for Deadlock
	Slide 28: Resource-Allocation Graph Example
	Slide 29: Resource-Allocation Graph Example
	Slide 30: Is This Deadlock?
	Slide 31: Deadlock Detection
	Slide 32: Deal with Deadlock
	Slide 33: Prevent by Eliminating One Condition
	Slide 34: Virtually Infinite Resources
	Slide 35: Prevent by Eliminating One Condition
	Slide 36: Request Resource in Partial Order
	Slide 37: Prevent by Eliminating One Condition
	Slide 38: Recovering from Deadlock
	Slide 39: Avoid Deadlock
	Slide 40: Three States
	Slide 41: Banker’s Algorithm
	Slide 42: Deadlock Summary
	Slide 43: Condition Vars & Locks
	Slide 44: Condition Vars & Locks
	Slide 45: Condition Vars & Locks
	Slide 46: Condition Vars & Locks
	Slide 47: Condition Vars & Locks
	Slide 48: Monitors and Java
	Slide 49: Condition Vars & Locks
	Slide 50: Next time…

