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Deadlock

Synchronization is a live gun
* We can easily shoot ourselves in the foot
* Incorrect use of synchronization can block all processes
* You have likely been intuitively avoiding this situation already



Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park







Deadlock

Synchronization is a live gun
* We can easily shoot ourselves in the foot
* Incorrect use of synchronization can block all processes
* You have likely been intuitively avoiding this situation already

If one process tries to access aresource that a second process holds, and
vice-versa, they can never make progress

We call this situation deadlock, and we’ll look at:
* Definition and conditions necessary for deadlock
* Representation of deadlock conditions
* Approaches to dealing with deadlock



Bridge Crossing Example

Each segment of road can be viewed as a resource
* Car must own the segment under them
 Must acquire segment that they are moving into OW"E G

Deadlock resolved if one car backs up (preempt resources and rollback)

Starvation: East-going traffic really fast — no one gets to go west



Deadlock Definition

Deadlock is a problem that can arise:
* When processes compete for access to limited resources
* When processes are incorrectly synchronized

Definition:
* Deadlock exists among a set of processes if every process is waiting for an event that
can be caused only by another process in the set.



Deadlock Example

mutex t x, vy,

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x); lock(y);
lock(y); lock(x);
/* critical section */ /* critical section */
unlock(y); unlock(x);
unlock(x); unlock(y);
} }




Deadlock Example: “Unlucky” Case

mutex t x, vy,

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x);
lock(y);
stalled
<unreachable> stalled
/* critical section */ <unreachable>
unlock(y); /* critical section */
unlock(x); unlock(x);
} unlock(y);
}

Neither thread will get to run -»Deadlock



Deadlock Example: “Lucky” Case

mutex_t ml, m2;

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x);
lock(y);
lock(y);
lock(x);

/* critical section */
unlock(y);
unlock(x);

¥

/* critical section */
unlock(x);
unlock(y);

Sometimes, schedule won’t trigger deadlock!
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Deadlock Example

mutex_t ml, m2;

Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x); lock(y);
lock(y); lock(x);
/* critical section */ /* critical section */
unlock(y); unlock(x);
unlock(x); unlock(y);
} }

This lock pattern exhibits non-deterministic deadlock
* Sometimes it happens, sometimes it doesn’t!

This is really hard to debug!

11



Deadlock Questions

Can you have deadlock w/o mutexes?

12



Deadlock Example: Memory Contention

mutex_t ml, m2;

Thread A: Thread B:

void pl(void *ignored) { void p2(void *ignored) {
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
/* do something */ /* critical section */
Free(m2); unlock(ml);
unlock(ml); unlock(m2);

} }

If only 2 MB of space, we get same deadlock situation
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Deadlock Example: Memory Contention

mutex_t ml, m2;

Thread A: Thread B:

void pl(void *ignored) {

void p2(void *ignored) {
AllocateOrWait(1 MB)

AllocateOrWait(1 MB)
AllocateOrWait(1 MB)

/* do something */ AllocateOrWait(1 MB)

Free(m2); /* critical section */
unlock(ml); unlock(ml);
} unlock(m2);

If only 2 MB of space, we get same deadlock situation
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Deadlock Questions

Can you have deadlock w/o mutexes?

* Threads often block waiting for resources
o Locks
o Terminals
o Printers
o CD drives
o Memory
* Same problem with condition variables
o Suppose resource 1 managed by c7, resource 2 by c2
o Ahas1,waitson c2, B has 2, waitson c1
* Threads often block waiting for other threads
o Pipes
o Sockets
* You can deadlock on any of these!
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Dining Philosophers Problem

Philosophers spend their lives
alternating thinking and eating

Don’t interact with neighbors,

occasionally eat
* Need 2 chopsticks to eat
* Release both when done

Can only pick up 1 fork at a time
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Dining Philosophers in Code

#define N 5 /* number of philosophers */
semaphore forks[N]; /* semaphores for each fork, each initialized to 1 (omitted) */

void philosopher(int i) /* i: philosopher id, @ to 4

*/ void take fork(int i) {
{ forks[i].P();
while (true) { /*wait for ith forkR's semaphore*/

think(); /* philosopher 1is thinking */ }
take fork(i); /* take Lleft fork */
take fork((i + 1) % N); /* take right fork */ void put_ fork(int i) {
eat(); /* yum-yum, spaghetti */ forks[i].V();
put_fork(i); /*put Left fork back on the table*/ /*signal ith forkR's semaphore*/
put_fork((i + 1) % N); /* put right fork back on }

the table */

}
}

What problem with this code?
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How to Avoid Deadlock Here?

Multiple solutions exist:
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How to Avoid Deadlock Here?

Multiple solutions exist:
Simple one: allow at most 4 philosophers to sit simultaneously at the table

Another solution: define a partial order for resources (forks)
* Numberthe forks
* Philosopher must always pick up lower-numbered fork first and then higher-
numbered fork
* What happens if four philosophers all pick up their lower-numbered fork?
* Disadvantage
o Not always practical, when the complete list of all resources is not known in
advance

Third solution: all or none each time
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2"d Attempt to Dining Philosopher Problem

Fix the previous code

#define N 5 /* number of philosophers */
semaphore forks[N]; /* semaphores for each fork, each initialized to 1 (omitted) */

void philosopher(int i) /* i: philosopher id, © to 4

*/ void take fork(int i) {
{ forks[i].P();
while (true) { /*wait for ith fork's semaphore*/

think(); /* philosopher 1is thinking */ }
take _fork(i); /* take Left fork */
take fork((i + 1) % N); /* take right fork */ void put_ fork(int i) {
eat(); /* yum-yum, spaghetti */ forks[i].V();
put_fork(i); /*put Left fork back on the table*/ /*signal 1th fork's semaphore*/
put_fork((i + 1) % N); /* put right fork back on }

the table */

}
}
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2" Attempt to Dining Philosopher Problem

#define N 5 /* number of philosophers */

#define LEFT (i+N-1) % N /* 1's left neighbor */

#define RIGHT (i+l1l) % N /* 1's right neighbor */

enum State {THINKING, HUNGRY, EATING}; /* a philosopher's status */
enum State states[N]; /* keep track of each philosopher's status */
semaphore mutex = 1; /* mutual exclusion for critical section */
semaphore phis[N]; /* semaphore for each philosopher, init to @ */

void philosopher(int i) /* 1: philosopher id, © to N-1 */
{
while (true) {
think(); /* philosopher 1is thinking */
take forks(i); /* take both forks */
eat(); /* yum-yum, spaghetti */
put_forks(i); /* put both forks */
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2"d Attempt to Dining Philosopher Problem

void take forks(int i) /* 1: philosopher id, © to N-1 */
{
mutex.P(); /* enter critical section */
states[i] = HUNGRY; /* indicate philosopher is hungry */
test(i); /* try to acquire two forks */
mutex.V(); /* exit critical section */
phis[i].P(); /* block 1if forks not acquired */
}

void put_forks(int i) { /* i: philosopher id, 6 to N-1 */
mutex.P(); /* enter critical section */
states[i] = THINKING; /* indicate 1 finished eating */
test(LEFT); /* see 1if Left neighbor can eat now */
test(RIGHT); /* see 1if right neighbor can eat now */
mutex.V(); /* exit critical section */
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2"d Attempt to Dining Philosopher Problem

void test(int i) /* 1: philosopher 1d, 6 to N-1 */
{
if (states[i] == HUNGRY &&
states[LEFT] != EATING &&
states[RIGHT] != EATING) {
states[1] = EATING; /* philosopher I can eat now */
phis[i].V(); /* signal 1 to proceed */
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Notes for the Solution

What is the purpose of states array?

* given that already have the semaphore array?
* A semaphore doesn’t have operations for checking its value!

What if we don’t use the mutex semaphore?

Why the semaphore array is for each philosopher?
* Ourfirst attempt uses semaphore array for each fork

What if we put phis[i].P(); inside the critical section?

What if we don’t call the two test in put_forks?
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Conditions for Deadlock

Mutual exclusion — At least one resource must be held in a non sharable mode

Hold and wait — There must be one process holding one resource and waiting for
another resource

No preemption — Resources cannot be preempted (critical sections cannot be
aborted externally)

Circular wait - There must exist a set of processes [P1, P2, P3,...,Pn] such that P1 is
waiting for P2, P2 for P3, etc.
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How to detect deadlocks?

Questions
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Conditions for Deadlock

View system as graph
* Processes and Resources are nodes
* Resource Requests and Assignments are edges

Resource-Allocation Graph:
* AsetofThreads Ty, 15,...,T, @

* ResourcetypesR{,R,...,R, n

o CPU cycles, memory space, I/O devices 1 R,

* Eachresource type R; has W; instances

oo
Each thread utilizes a resource as follows: [ 25
o Request() / Use() / Release() R,

. ORF
* Thread T; requesting resource R;: oo

* Thread T; holding instance of Rj: @4—"5

oo
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Resource-Allocation Graph Example




Resource-Allocation Graph Example
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Is This Deadlock?

@




Deadlock Detection

If graph has no cycles = no deadlock

If graph contains a cycle
* Definitely deadlock if only one instance per resource (waits-for graph (WFG))
* Otherwise, maybe deadlock, maybe not

Traverse the resource graph is expensive
¢ Many Processes and resources to traverse

Only invoke detection algorithm periodically
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Deal with Deadlock

There are four approaches for dealing with deadlock:

* Ignore it
* Prevention: write your code to make it impossible for deadlock to
nappen

* Avoidance - control allocation of resources
* Recovery-look for a cycle in dependencies
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1.

Prevent by Eliminating One Condition

Mutual exclusion
* Buy more resources, split into pieces, or virtualize to make "infinite" copies
* Giveillusion of infinite resources (e.g. virtual memory)
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Virtually Infinite Resources

Thread A: Thread B:

void pl(void *ignored) { void p2(void *ignored) {
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
AllocateOrWait(1 MB) AllocateOrWait(1 MB)
/* do something */ /* critical section */
Free(m2); unlock(ml);
unlock(ml); unlock(m2);

} }

With virtual memory we have “infinite” space so everything will
just succeed, thus above example won’t deadlock



Prevent by Eliminating One Condition

1. Mutual exclusion
* Buy more resources, split into pieces, or virtualize to make "infinite" copies
* Giveillusion of infinite resources (e.g. virtual memory)

2. Hold and wait
* Wait on all resources at once (must know in advance)

3. No preemption
* Physical memory: virtualized with VM, can take physical page away and give to any
process!

4. Circularwait
 Partial ordering of resources
o e.g.,always acquire mutex m7 before m2
o Usually design locking discipline for application this way
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Request Resource in Partial Order

mutex t x, vy;

unlock(x);

Thread A: Thread B:
¥ void pl(void *ignored) { void p2(void *ignored) {
N lock(x); lock(y);
lock(y); lock(x);
/* critical section */ /* critical section */
unlock(y); unlock(x);
unlock(x); unlock(y);
Thread A: Thread B:
void pl(void *ignored) { void p2(void *ignored) {
lock(x); lock(x);
lock(y); lock(y);
/* critical section */ /* critical section */
unlock(y); unlock(x);

unlock(y);
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Prevent by Eliminating One Condition

4. Circular wait
 Partial ordering of resources
o e.g.,always acquire mutex m171 before m2
o Usually design locking discipline for application this way
* Make all threads request everything they’ll need at the beginning.
o Problem: Predicting future is hard, tend to over-estimate resources
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Recovering from Deadlock

Terminate processes
 Abort all deadlocked processes
o Processes need to start over again
* Abort one process at a time until cycle is eliminated
o System needs to rerun detection after each abort

Preempt resources (force their release)
* Need to select process and resource to preempt
* Need torollback process to previous state
* Need to prevent starvation

Roll back actions of deadlocked threads
* Commontechnique in databases (transactions)
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Avoid Deadlock

Idea solution: When a process requests a resource, OS only grant it

when:
* The process can obtain all resources it needs in future requests

* [nformation in advance about what resources will be needed by processes to
guarantee that deadlock will not happen

Tough
e Hard to determine all resources needed in advance
 Good theoretical problem, not as practical to use
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Three States

Safe state
 System can delay resource acquisition to prevent deadlock

Deadlock avoidance: prevent system
from reaching an unsafe state

Unsafe state

* No deadlockyet...
* Butthreads canrequest resources in a pattern that unavoidably leads to deadlock

Deadlocked state

* There exists a deadlock in the system
* Also considered “unsafe”
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Banker’s Algorithm

1. Each process must state its maximum resource demand
e OStracks available resource, maximum demand of each process

2. When a process requests resources:
e OScheckwhetherthe request would lead to an unsafe state

10 units of resource A

P1: Max=7, Allocated = 3
P2: Max =5, Allocated = 2
P3: Max = 3, Allocated = 2




Deadlock Summary

Deadlock occurs when processes are waiting on each other and cannot

make progress
* Cyclesin Resource Allocation Graph (RAG)

Deadlock requires four conditions
* Mutual exclusion, hold and wait, no resource preemption, circular wait

Four approaches to dealing with deadlock:
* lgnore it - Living life on the edge
* Prevention — Make one of the four conditions impossible
* Avoidance - Banker’s Algorithm (control allocation)
* Detection and Recovery — Look for a cycle, preempt or abort
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Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks
* void cond_init(cond_t* ...);
* void cond_wait (cond_t *c, mutex_t *m);
o Atomically unlock mand sleep until csignaled
o Thenre-acquire m and resume executing
* void cond_signal (cond_t *c);
* void cond_broadcast (cond_t *c);
o Wake one/all threads waiting on c
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Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks

A monitor ® a module whose state includes a C/V and a lock
 Difference is syntactic; with monitors, compiler adds the code

Itis “just as if” each procedure in the module calls acquire() on entry
and release() on exit

* Butcan be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal
on independent conditions

44



Condition Vars & Locks

C/Vs are also used without monitors in conjunction with locks

A monitor ® a module whose state includes a C/V and a lock
 Difference is syntactic; with monitors, compiler adds the code

Itis “just as if” each procedure in the module calls acquire() on entry
and release() on exit

* Butcan be done anywhere in procedure, at finer granularity

With condition variables, the module methods may wait and signal
on independent conditions
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Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep?
* void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

}

while (count == BUFFER_SIZE) {

mutex_unlock(&mutex);
cond_wait(&not_full);
mutex_lock(&mutex);
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Condition Vars & Locks

Why must cond_wait both release mutex_t & sleep?
* void cond_wait(cond_t *c, mutex_t *m);

Why not separate mutexes and condition variables?

Producer: Consumer:

while (count == BUFFER_SIZE) { while (count == BUFFER_SIZE) {
mutex_unlock(&mutex);

mutex_unlock(&mutex);
count --;

cond_signal(&not_ full);

cond_wait(&not_full); mutex_lock(&mutex);
mutex_lock(&mutex); }




Monitors and Java

A lock and condition variable are in every Java object
* No explicit classes for locks or condition variables

Every object is/has a monitor
* Atmostonethread can beinside an object’s monitor
* Athread enters an object’s monitor by
o Executing a method declared “synchronized”
o Executing the body of a “synchronized” statement

* The compiler generates code to acquire the object’s lock at the start of the method
and release it just before returning

o Thelockitselfis implicit, programmers do not worry about it
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Condition Vars & Locks

Every object can be treated as a condition variable
* Half of Object’s methods are for synchronization!

Take a look at the Java Object class:
* Object.wait(*) is Condition::wait()
* Object.notify() is Condition::signal()
* Object.notifyAll() is Condition::broadcast()
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Read Chapter 15, 16, 18

Next time...
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