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Lab0 deadline: 09/19 23:59PM Friday, individually

score = code (70%) + design doc (30%)
Submit through GradeScope (only lab 0)
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What Is Pintos?

e Pintos is a teaching operating system for 80x86

o Developed in 2005 for Stanford’s CS 140 OS class
o Small enough so entire code can be read and understood by students

« Pintos supports kernel threads, virtual memory, user programs, and

file system
o Premature or incomplete

In this course project, you will improve all of these areas of Pintos to make
it complete
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Pintos Kernel(Post Project)
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Lab O Overview

e Lab 0 is a warm-up exercise
e Preparing you for the later Pintos projects
e In Lab O, you will:

e Install and boot Pintos

e Go through the PC Bootstrap

e Learn how to debug Pintos in QEMU and Bochs
« Add a tiny kernel monitor to Pintos

https://vigonghu.github.io/EC440/fall25/projects/lab0



https://yigonghu.github.io/EC440/fall25/projects/lab0

Lab 1 Overview

e Extending the functionality of Pintos thread system
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Lab 2 Overview

« Enable user programs to interact with the OS via system calls
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Lab 3 Overview

e Implement the virtual memory management
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Lab 4 Overview

« Extending basic filesystem to hierarchical filesystem
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Pintos Kernel(Post Project)
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Pintos Source Code Overview

CS318 - Pintos

Pintos source browser for JHU CS318 course

Main Page ‘ Data Structures » I Files ~ l
File List

Here is a list of all files with brief descriptions:

v Il src

» [ devices

» [ examples
(L filesys
& 1ib
[ tests

Y

[ threads

Y Y Y Yy

https://jhu-cs318.github.io/pintos-doxygen/html/files.html

(& userprog
» [ utils



https://jhu-cs318.github.io/pintos-doxygen/html/files.html

Pintos Source Tree

o threads/

O Source code for the base kernel, which you will modify starting in project 1
o userprog/

O Source code for the user program loader, which you will modify starting with project 2
e vm/
O An almost empty directory. You will implement virtual memory here in project 3.

o filesys/

O Source code for a basic file system. You will use this file system starting with project 2,
but you will not modify it until project 4



Pintos Source Tree

devices/

O Source code for I/O device interfacing: keyboard, timer, disk, etc. You will
modify the timer implementation in project 1.

o lib/

O An implementation of a subset of the standard C library.
tests/

o All the test cases for each project
examples/

O Example user programs for use starting with project 2



Pintos Source Tree

e misc/
o utils/

O These files may come in handy if you decide to try working with Pintos on your
own machine. Otherwise, you can ignore them
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Pintos Running Environment

e Pintos can run and debug in

o Emulated environment
o Real hardware

Pintos Apps Pintos Apps

Pintos kernel Pintos kernel

In this course, we will use
emulated environment. Emulator

Host OS




Environment

e Required Tools for PintOS

o 80x86 cross-compiler toolchain for 32-bit architecture
> C compiler, assembler, linker, and debugger.

o x86 emulator
> QEMU or Bochs

« Working Environment

e SCC lab machine
e Pre-made docker/utm image
e Your own machine



Use premade docker/virtual machine image

« Premade containers already have toolchains installed
e Environments are setup in advance, use out-of-the-box

o Useful Resource

« Docker image

docker run -it —name pintos buec440/pintos bash
« UTM image

To be added




Installing Pintos on You Own Machine

e You may want to work on your own machines to be more
productive
« Need to build the toolchain

o Useful Links

e Build script (tested on Mac, Ubuntu and Fedora)
pintos/src/misc/toolchain-build.sh

« Installation guide
https://vigonghu.github.io/EC440/fall25/projects/setup



https://yigonghu.github.io/EC440/fall25/projects/setup

Environment setting on SCC Lab Machine

e CS lab machines already have required tools installed
« To include tools, you need source the ec440 tools

o Change working directory into /projectnb/ec440/projects and:

source envsetup.sh

e Build pintos

o git clone https://github.com/yigonghu/ec440-pintos.git
o cd pintos/src/threads
o make
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GDB

e “GNU Debugger”

« A debugger for several languages, including C and C++

e The Pintos uses GDB as the default debugging tool.

e Online manual
https://sourceware.org/gdb/current/onlinedocs/gdb/



https://sourceware.org/gdb/current/onlinedocs/gdb/

« CGDB

o A lightweight curses interface to GDB

o Standard gdb console

o A split screen view that displays the source
code

e Strongly recommend using CGDB to debug
Pintos
« Reference

https://cgdb.github.io/

* Uncomment to debug and attach */
#if

read (0, &c, 1)

512| sendif

parse_long_options (
current_line = ibuf_init ()

, _FILE__,

create tgdb
t_gdb (argc,

s0,b

c, line 1514,

tarted already,

at cgdb,c:1516

LINE



https://cgdb.github.io/

 PEDA

o An extension for GDB written in
Python

o Standard gdb console

o A split screen view that displays
registers, assembly and stack

« Reference
https://github.com/longld/peda

and e

DWORD PTR

[e



https://github.com/longld/peda

How to Use CGDB to Debug A Toy Program?

The given code computes the
factorial of a number erroneously.
The program always outputs O,
regardless of the input




Starting Up CGDB

e To run the cgdb, just first try “cgdb <filename>" (build with ‘gcc -g’)




Running Program

e To run the buggy program, use:
(gdb) run

e This runs the program
> |f it has no serious problems, the program should run fine here too.
> |f the program did have issues, then you should get some useful
information like the line number where it crashed, and parameters to the
function that caused the error



Setting Breakpoints

« What if the program output doesn’t match your expectation?
o Step through your code a bit at a time, until you arrive upon the error
e Breakpoints can be used to stop the program run in the middle, at a

designated point.




Run Program with breakpoints

« Once you’ve set a breakpoint, you can try using the run command again, This
time, it should stop where you tell it to.

3| long factorial(int n);
5/ int main()

int n = 5;
long val;
> val=factorial(n);
printf(
return :




Step Into Code

e You can single-step (execute just the next line of code) by
typing “step.” This gives you really fine-grained control over
how the program proceeds. You can do this a lot.

H+




How to Check The Variable Change?

e Setting Watchpoints

o Watchpoints interrupt the program whenever a watched variable’s value
is modified




Checking the Value of Variable

o After running the program, We've found the first bug! result is
supposed to be evaluated by multiplying 3 * 2 * 1 but here the
multiplication starts from 2. To correct it, we have to change
the loop a little bit, but before that, lets see if the rest of the
calculation is correct




GDB on Pintos (1)

 Pintos uses gdb's remote debugging feature

e Debugging Pintos is a two-step process

o Starting pintos with gdb option: pintos --gdb -- run mytest
o A second terminal to invoke GDB on kernel image: pintos-gdb kernel.o
o Within the GDB shell, issue command: target remote localhost:1234

= short-hand for the command: debugpintos

e If using lab machine, you need to use a custom port to avoid port

conflict error: --gdb-port = port_number
o Use the same port number in GDB: target remote localhost:port number



GDB on Pintos (2)

« CGDB

o The CS lab machine has cgdb installed
o pintos-gdb will automatically prefer cgdb if it's available



Debugging On Pintos

e We introduce a bug into Pintos by commenting the initialization of
ready_list, which will cause an assertion error in Pintos




Machine View

SeaBI0S (version 7-20180724_192412-buildhw-07.phxZ2.fedorapro ject.org-1.fc29)
Booting from Hard Disk...

Pintos hdal

.Loading ............

Kernel command line: run alarm-zero

“Pintos booting with 3,968 kB RAM...

367 pages available in kernel pool.

367 pages available in user pool.

Kernel PANIC at ../../libs/kernel/list.c:171 in list insert(): assertion " is_ inte
irior (before) ii is tail (before)’ failed.

Call stack: Oxc0029717 Oxc00Z29b7e OxcOOZ9dZ2Z OxcOOZ0cHbH4 OxcOOZO0Obba OxcBOBOZ03a3 O
.cO020372.

.The ‘backtrace’ program can make call stacks useful.

.Read "Backtraces"” in the "Debugging Tools" chapter

‘of the Pintos documentation for more information.




Debugging On Pintos

o To trace the call stack that cause the fallure we set a break point in
list.c:170 and run the Pintos |[EiSSNN




Debugging On Pintos

« Then we continue to run the program until it reaches the assertion
error. We check the call stack of list_insert using "backtrace ( bt’).
We find that the thread unblock function calls the insert_error.




Debugging On Pintos

« We then check the value of ready _list and we find that the list is not
initialized yet. Then we know the root cause is the uninitialized data.




« Be familiar with daily commands

o git clone
o git commit
o git push

e A little more advanced

o git checkout
O git reset

« Reference
https://www.atlassian.com/git/tutorials
https://www.katacoda.com/courses/git



https://www.atlassian.com/git/tutorials
https://www.katacoda.com/courses/git

Tips for using Git

« When using Git, you should:

o Use .gitignore to avoid checking in unnecessary files (e.g., object files)

o Write meaningful commit messages

o Create branches for different exercises/features

o Use pull requests to merge feature branch into master
o Have teammates review the changes

o Integrate your team's changes early and often

« When using Git, you should avoid:

o Check in object files

o Use git add -A command to commit all the files
o Use git status to see modified & staged files

o Use git push --force to force remote update



IDE settings: vim

« Vim is sufficient for daily development on servers
o Recommended Vim plugins: NERDTree, YouCompleteMe, COC, fzf.vim
o Recommended NeoVim plugins: COC.nvim
o Plugin manager: vim-plug

« cscope is a developer's tool for browsing source code
o Reference: http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-
and-cscope
o Use cscope in Pintos: https://www.cs.jhu.edu/~huang/cs318/fall21/
project/pintos_12.htmI#SEC170
o make cscope’ in src/



http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170

IDE settings: vim

e "Inconvenient" to use at the beginning
o Try to force yourself using them

o Typing keys is in general much faster than mouse-click
o Once you develop the habit, this set of tools will be your lifetime
companions that boost programming productivity



IDE settings: VSCode

e VSCode is a GUI IDE by Microsoft

o Free of charge
o Easy to use for remote development via SSH

e Cache locally, sync automatically, execute remotely
« Install “Remote Development Extension Pack” plugin

« Connect to a remote host
« Remote Development Reference: https://code.visualstudio.com/

docs/remote/ssh



https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh

QEMU/bochs

« QEMU: faster

pintos --gemu ...
make check SIMULATOR=--gemu

« Bochs: support reproducible mode

pintos --bochs ...

make check SIMULATOR=--bochs

(For reproducible mode, refer to http://bochs.sourceforge.net/doc/docbook/user/
bochsrc.html, section 4.3.16)

(Lab 1 will use bochs & Lab 2-4 will use QEMU. Change SIMULATOR for local test-only.)


http://bochs.sourceforge.net/doc/docbook/user/bochsrc.html
http://bochs.sourceforge.net/doc/docbook/user/bochsrc.html
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Development Suggestions

e Bad coding habit
o Divided the assignment into pieces
o Each group member worked on his or her piece in isolation until just
before the deadline
o Reconvened to combine their code and submit

« Why is it bad?
o Conflict with each other
o Requiring lots of last-minute debugging



Development Suggestions

e Good coding habit
Integrating your team's changes early and often
Do incremental function testing

®
O
o Using a source code control system such as Git
o Read the compiler WARNINGs

e This is less likely to produce surprises
« These systems also make it possible to review changes and, when a change
introduces a bug, drop back to working versions of code



Code Style

e Can your group member and TAs understand your code easily?
o E.g.: GNU code style: http://www.gnu.org/prep/standards/
o Limit source file & function lines
o Following the naming convention
o Adding meaningful comments
o If you remove existing Pintos code, delete it from your source file entirely

e The style will be accounted for during grading
o Bad code or code with messy styles will get points deducted even if it
passes tests.


http://www.gnu.org/prep/standards/

General Tips

e Think about design before you start coding

O You can run through your design with the TAs or Professor if you are
unsure

® Reserve enough time to write design doc (30% of score)
e Carefully read the project documentation pintos.pdf/.html

O The appendix of the doc is particularly helpful
O Many confusions come from not reading the
documentation thoroughly



Reference

Project Website

https://yigonghu.github.io/EC440/fall25/projects/
Pintos

https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_7.html
CGDB

https://cgdb.github.io/
Git

https://www.atlassian.com/git/tutorials



https://yigonghu.github.io/EC440/fall25/projects/
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_7.html
https://cgdb.github.io/
https://www.atlassian.com/git/tutorials

Recap C/Assemble Language

Reference for C:
https://en.wikibooks.org/wiki/C Programming/Advanced data types

https://en.wikibooks.org/wiki/C Programming/Pointers _and_arrays

Reference for assembly:
https://en.wikibooks.org/wiki/X86 Assembly/GAS_Syntax

https://wiki.osdev.org/Inline_Assembly



https://en.wikibooks.org/wiki/C_Programming/Advanced_data_types
https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays
https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://wiki.osdev.org/Inline_Assembly

Thanks for attending! Happy hacking!



