CS318 Pintos Project LabO
Overview

William Wang (xwill@bu.edu)

mailto:xwill@bu.edu

‘ Administrivia

e Lab overview
« Environment Setup
e Dev Tool

e TIpS

Lab0 deadline: 09/19 23:59PM Friday, individually

score = code (70%) + design doc (30%)
Submit through GradeScope (only lab 0)

e Administrivia

=) Lab overview
« Environment Setup
e Dev Tool

e TIpS

What Is Pintos?

e Pintos is a teaching operating system for 80x86

o Developed in 2005 for Stanford’s CS 140 OS class
o Small enough so entire code can be read and understood by students

« Pintos supports kernel threads, virtual memory, user programs, and

file system
o Premature or incomplete

In this course project, you will improve all of these areas of Pintos to make
it complete

Pintos Kernel(Pre Project)

Priority Scheduling Alarm
MLFQS Scheduling Clock

P1: Kernel-mode Test Cases

Threading Device Support
Simple Scheduler Keyboard, VGA, USB, Serial Port, Timer, PCl, IDE

Boot Support

Pintos Kernel

Support Code Public Tests

Pintos Kernel(Post Project)

Priority Scheduling

MLFQS Scheduling

P1: Kernel-mode Test Cases

Threading
Simple Scheduler

Boot Support
Pintos Kernel

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

P2-4:

Stress Tests

Robustness Basic Filesystem

Usermode
Test Cases

P4: Extended

P2-4: P3: Virtual Memory .
Filesystem

P2-4: System Call Functionality

Support Code

Public Tests

Priority Scheduling

MLFQS Scheduling

P1: Kernel-mode Test Cases

P1: Alarm
Clock P1: Priority
Inheritance

P1: MLFQS

P1: Priority Scheduler

Threading
Simple Scheduler

Pintos Kernel

P2: System Call Layer: Copy-in/out, FD Management

P2: Process Management et Mem':lr:s-mapped
) P3: Address Space
P3: Page Manager
Fault

Handling P3: Page
Replacement
Physical
Memory
Manager Basic Filesystem

P4: Hierarchical
Multi-threaded
Filesystem
and
Buffer Cache
MMU
Support

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

Boot Support

Support Code

Students Create

Lab O Overview

e Lab 0 is a warm-up exercise
e Preparing you for the later Pintos projects
e In Lab O, you will:

e Install and boot Pintos

e Go through the PC Bootstrap

e Learn how to debug Pintos in QEMU and Bochs
« Add a tiny kernel monitor to Pintos

https://vigonghu.github.io/EC440/fall25/projects/lab0

https://yigonghu.github.io/EC440/fall25/projects/lab0

Lab 1 Overview

e Extending the functionality of Pintos thread system

MLFQS Scheduling

P1: Kernel-mode Test Cases

—
Priority Scheduling Alarm
Clock

P1: Priority
Inheritance

P1: Alarm
Clock

P1: Priority Scheduler

Threading
Simple Scheduler

Pintos Kernel

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

Boot Support

2 Support Code

Students Create Public Tests

Lab 2 Overview

« Enable user programs to interact with the OS via system calls

Stress Tests P2-4: P2-4:
Robustness Basic Filesystem

Usermode P2-4: System Call Functionality
Test Cases

Priority Scheduling P2: System Call Layer: Copy-in/out, FD Management

MLFQS Scheduling
P1: Kernel-mode Test Cases P2: Process Management
P1: Alarm
Clock P1: Priority
Inheritance
P1: MLFQS

P1: Priority Scheduler Basic Filesystem

Threading Device Support
Simple Scheduler Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

. Boot Support
Pintos Kernel
3/7/2009 Support Code Students Create Public Tests Post Project 2

Lab 3 Overview

e Implement the virtual memory management

Stress Tests P2-4: P2-4: P3: Virtual Memory

Robustness Basic Filesystem

Usermode P2-4: System Call Functionality
Test Cases

Priority Scheduling P2: System Call Layer: Copy-in/out, FD Management

P2: Process Management
P1: Kernel-mode Test Cases ' Files
. P3: Address Space
P1: Priority Fault
Inheritance Handling P3: Page
Replacement
Physical

MMU
RS e Memory
P1: Priority Scheduler pp Manager Basic Filesystem

Threading Device Support
Simple Scheduler Keyboard, VGA, USB, Serial Port, Timer, PCl, IDE

. Boot Support
Pintos Kernel
Support Code Students Create Public Tests

Lab 4 Overview

« Extending basic filesystem to hierarchical filesystem

P2-4: P2-4: P3: Virtual Memory oAlE s

Robustness Basic Filesystem Filesystem

Stress Tests

Usermode P2-4: System Call Functionality
Test Cases

Priority Scheduling P2: System Call Layer: Copy-in/out, FD Management

MLFQS Scheduling
P2: Process Management P3: Memory-mapped
P1: Kernel-mode Test Cases : geme .

P1: Alarm P3: Page P3: Address Space P4: Hierarchical

Manager ;
Clock P1: Priority Fault ge Multi-threaded

Inheritance Handling P3: Page Filesystem
P1: MLFQS Replacement and
Buffer Cache

Physical
Memory
Manager Basic Filesystem

P1: Priority Scheduler

Threading Device Support
Simple Scheduler Keyboard, VGA, USB, Serial Port, Timer, PCl, IDE

. Boot Support
Pintos Kernel
Support Code Students Create Public Tests

Pintos Kernel(Post Project)

NIEENS

Priority Scheduling Usermode P2-4: System Call Functionality

Test Cases
MLFQS Scheduling

P2-4: P2-4: P3: Virtual Memory
Robustness Basic Filesystem

P1: Kernel-mode Test Cases

Priority Scheduling P2: System Call Layer: Copy-in/out, FD Management

MLFQS Scheduling
P2: Pr Manozement P3: Memory-mapped
P1: Kernel-mode Test Cases - Process Manag Files

. P3: Address Space
£y
P1: Priority Fault

Jll—!!

Threading Device Support
Simple Scheduler Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

. Boot Support
Pintos Kernel
Support Code Public Tests

Inheritance Handling P3: Page
P1: MLFQS Replacement

MMU Physical

- Supoort Memory
P1: Priority Scheduler PP Manager Basic Filesystem

Threading Device Support
Simple Scheduler Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

. Boot Support N
Pintos Kernel
Support Code Students Create Public Tests

Pintos Source Code Overview

CS318 - Pintos

Pintos source browser for JHU CS318 course

Main Page ‘ Data Structures » I Files ~ l
File List

Here is a list of all files with brief descriptions:

v Il src

» [devices

» [examples
(L filesys
& 1ib
[tests

Y

[threads

Y Y Y Yy

https://jhu-cs318.github.io/pintos-doxygen/html/files.html

(& userprog
» [utils

https://jhu-cs318.github.io/pintos-doxygen/html/files.html

Pintos Source Tree

o threads/

O Source code for the base kernel, which you will modify starting in project 1
o userprog/

O Source code for the user program loader, which you will modify starting with project 2
e vm/
O An almost empty directory. You will implement virtual memory here in project 3.

o filesys/

O Source code for a basic file system. You will use this file system starting with project 2,
but you will not modify it until project 4

Pintos Source Tree

devices/

O Source code for I/O device interfacing: keyboard, timer, disk, etc. You will
modify the timer implementation in project 1.

o lib/

O An implementation of a subset of the standard C library.
tests/

o All the test cases for each project
examples/

O Example user programs for use starting with project 2

Pintos Source Tree

e misc/
o utils/

O These files may come in handy if you decide to try working with Pintos on your
own machine. Otherwise, you can ignore them

e Administrivia

e Lab O overview
- Environment Setup

e Dev Tool

e TIpS

Pintos Running Environment

e Pintos can run and debug in

o Emulated environment
o Real hardware

Pintos Apps Pintos Apps

Pintos kernel Pintos kernel

In this course, we will use
emulated environment. Emulator

Host OS

Environment

e Required Tools for PintOS

o 80x86 cross-compiler toolchain for 32-bit architecture
> C compiler, assembler, linker, and debugger.

o x86 emulator
> QEMU or Bochs

« Working Environment

e SCC lab machine
e Pre-made docker/utm image
e Your own machine

Use premade docker/virtual machine image

« Premade containers already have toolchains installed
e Environments are setup in advance, use out-of-the-box

o Useful Resource

« Docker image

docker run -it —name pintos buec440/pintos bash
« UTM image

To be added

Installing Pintos on You Own Machine

e You may want to work on your own machines to be more
productive
« Need to build the toolchain

o Useful Links

e Build script (tested on Mac, Ubuntu and Fedora)
pintos/src/misc/toolchain-build.sh

« Installation guide
https://vigonghu.github.io/EC440/fall25/projects/setup

https://yigonghu.github.io/EC440/fall25/projects/setup

Environment setting on SCC Lab Machine

e CS lab machines already have required tools installed
« To include tools, you need source the ec440 tools

o Change working directory into /projectnb/ec440/projects and:

source envsetup.sh

e Build pintos

o git clone https://github.com/yigonghu/ec440-pintos.git
o cd pintos/src/threads
o make

e Administrivia
 Lab O overview

« Environment Setup
e Dev Tool

=)

e TIpS

GDB

e “GNU Debugger”

« A debugger for several languages, including C and C++

e The Pintos uses GDB as the default debugging tool.

e Online manual
https://sourceware.org/gdb/current/onlinedocs/gdb/

https://sourceware.org/gdb/current/onlinedocs/gdb/

« CGDB

o A lightweight curses interface to GDB

o Standard gdb console

o A split screen view that displays the source
code

e Strongly recommend using CGDB to debug
Pintos
« Reference

https://cgdb.github.io/

* Uncomment to debug and attach */
#if

read (0, &c, 1)

512| sendif

parse_long_options (
current_line = ibuf_init ()

, _FILE__,

create tgdb
t_gdb (argc,

s0,b

c, line 1514,

tarted already,

at cgdb,c:1516

LINE

https://cgdb.github.io/

 PEDA

o An extension for GDB written in
Python

o Standard gdb console

o A split screen view that displays
registers, assembly and stack

« Reference
https://github.com/longld/peda

and e

DWORD PTR

[e

https://github.com/longld/peda

How to Use CGDB to Debug A Toy Program?

The given code computes the
factorial of a number erroneously.
The program always outputs O,
regardless of the input

Starting Up CGDB

e To run the cgdb, just first try “cgdb <filename>" (build with ‘gcc -g’)

Running Program

e To run the buggy program, use:
(gdb) run

e This runs the program
> |f it has no serious problems, the program should run fine here too.
> |f the program did have issues, then you should get some useful
information like the line number where it crashed, and parameters to the
function that caused the error

Setting Breakpoints

« What if the program output doesn’t match your expectation?
o Step through your code a bit at a time, until you arrive upon the error
e Breakpoints can be used to stop the program run in the middle, at a

designated point.

Run Program with breakpoints

« Once you’ve set a breakpoint, you can try using the run command again, This
time, it should stop where you tell it to.

3| long factorial(int n);
5/ int main()

int n = 5;
long val;
> val=factorial(n);
printf(
return :

Step Into Code

e You can single-step (execute just the next line of code) by
typing “step.” This gives you really fine-grained control over
how the program proceeds. You can do this a lot.

H+

How to Check The Variable Change?

e Setting Watchpoints

o Watchpoints interrupt the program whenever a watched variable’s value
is modified

Checking the Value of Variable

o After running the program, We've found the first bug! result is
supposed to be evaluated by multiplying 3 * 2 * 1 but here the
multiplication starts from 2. To correct it, we have to change
the loop a little bit, but before that, lets see if the rest of the
calculation is correct

GDB on Pintos (1)

 Pintos uses gdb's remote debugging feature

e Debugging Pintos is a two-step process

o Starting pintos with gdb option: pintos --gdb -- run mytest
o A second terminal to invoke GDB on kernel image: pintos-gdb kernel.o
o Within the GDB shell, issue command: target remote localhost:1234

= short-hand for the command: debugpintos

e If using lab machine, you need to use a custom port to avoid port

conflict error: --gdb-port = port_number
o Use the same port number in GDB: target remote localhost:port number

GDB on Pintos (2)

« CGDB

o The CS lab machine has cgdb installed
o pintos-gdb will automatically prefer cgdb if it's available

Debugging On Pintos

e We introduce a bug into Pintos by commenting the initialization of
ready_list, which will cause an assertion error in Pintos

Machine View

SeaBI0S (version 7-20180724_192412-buildhw-07.phxZ2.fedorapro ject.org-1.fc29)
Booting from Hard Disk...

Pintos hdal

.Loading

Kernel command line: run alarm-zero

“Pintos booting with 3,968 kB RAM...

367 pages available in kernel pool.

367 pages available in user pool.

Kernel PANIC at ../../libs/kernel/list.c:171 in list insert(): assertion " is_ inte
irior (before) ii is tail (before)’ failed.

Call stack: Oxc0029717 Oxc00Z29b7e OxcOOZ9dZ2Z OxcOOZ0cHbH4 OxcOOZO0Obba OxcBOBOZ03a3 O
.cO020372.

.The ‘backtrace’ program can make call stacks useful.

.Read "Backtraces"” in the "Debugging Tools" chapter

‘of the Pintos documentation for more information.

Debugging On Pintos

o To trace the call stack that cause the fallure we set a break point in
list.c:170 and run the Pintos |[EiSSNN

Debugging On Pintos

« Then we continue to run the program until it reaches the assertion
error. We check the call stack of list_insert using "backtrace (bt’).
We find that the thread unblock function calls the insert_error.

Debugging On Pintos

« We then check the value of ready _list and we find that the list is not
initialized yet. Then we know the root cause is the uninitialized data.

« Be familiar with daily commands

o git clone
o git commit
o git push

e A little more advanced

o git checkout
O git reset

« Reference
https://www.atlassian.com/git/tutorials
https://www.katacoda.com/courses/git

https://www.atlassian.com/git/tutorials
https://www.katacoda.com/courses/git

Tips for using Git

« When using Git, you should:

o Use .gitignore to avoid checking in unnecessary files (e.g., object files)

o Write meaningful commit messages

o Create branches for different exercises/features

o Use pull requests to merge feature branch into master
o Have teammates review the changes

o Integrate your team's changes early and often

« When using Git, you should avoid:

o Check in object files

o Use git add -A command to commit all the files
o Use git status to see modified & staged files

o Use git push --force to force remote update

IDE settings: vim

« Vim is sufficient for daily development on servers
o Recommended Vim plugins: NERDTree, YouCompleteMe, COC, fzf.vim
o Recommended NeoVim plugins: COC.nvim
o Plugin manager: vim-plug

« cscope is a developer's tool for browsing source code
o Reference: http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-
and-cscope
o Use cscope in Pintos: https://www.cs.jhu.edu/~huang/cs318/fall21/
project/pintos_12.htmI#SEC170
o make cscope’ in src/

http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170

IDE settings: vim

e "Inconvenient" to use at the beginning
o Try to force yourself using them

o Typing keys is in general much faster than mouse-click
o Once you develop the habit, this set of tools will be your lifetime
companions that boost programming productivity

IDE settings: VSCode

e VSCode is a GUI IDE by Microsoft

o Free of charge
o Easy to use for remote development via SSH

e Cache locally, sync automatically, execute remotely
« Install “Remote Development Extension Pack” plugin

« Connect to a remote host
« Remote Development Reference: https://code.visualstudio.com/

docs/remote/ssh

https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh

QEMU/bochs

« QEMU: faster

pintos --gemu ...
make check SIMULATOR=--gemu

« Bochs: support reproducible mode

pintos --bochs ...

make check SIMULATOR=--bochs

(For reproducible mode, refer to http://bochs.sourceforge.net/doc/docbook/user/
bochsrc.html, section 4.3.16)

(Lab 1 will use bochs & Lab 2-4 will use QEMU. Change SIMULATOR for local test-only.)

http://bochs.sourceforge.net/doc/docbook/user/bochsrc.html
http://bochs.sourceforge.net/doc/docbook/user/bochsrc.html

e Administrivia
 Lab O overview

« Environment Setup
e Dev Tool

e TIpS

=)

Development Suggestions

e Bad coding habit
o Divided the assignment into pieces
o Each group member worked on his or her piece in isolation until just
before the deadline
o Reconvened to combine their code and submit

« Why is it bad?
o Conflict with each other
o Requiring lots of last-minute debugging

Development Suggestions

e Good coding habit
Integrating your team's changes early and often
Do incremental function testing

®
O
o Using a source code control system such as Git
o Read the compiler WARNINGs

e This is less likely to produce surprises
« These systems also make it possible to review changes and, when a change
introduces a bug, drop back to working versions of code

Code Style

e Can your group member and TAs understand your code easily?
o E.g.: GNU code style: http://www.gnu.org/prep/standards/
o Limit source file & function lines
o Following the naming convention
o Adding meaningful comments
o If you remove existing Pintos code, delete it from your source file entirely

e The style will be accounted for during grading
o Bad code or code with messy styles will get points deducted even if it
passes tests.

http://www.gnu.org/prep/standards/

General Tips

e Think about design before you start coding

O You can run through your design with the TAs or Professor if you are
unsure

® Reserve enough time to write design doc (30% of score)
e Carefully read the project documentation pintos.pdf/.html

O The appendix of the doc is particularly helpful
O Many confusions come from not reading the
documentation thoroughly

Reference

Project Website

https://yigonghu.github.io/EC440/fall25/projects/
Pintos

https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_7.html
CGDB

https://cgdb.github.io/
Git

https://www.atlassian.com/git/tutorials

https://yigonghu.github.io/EC440/fall25/projects/
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_7.html
https://cgdb.github.io/
https://www.atlassian.com/git/tutorials

Recap C/Assemble Language

Reference for C:
https://en.wikibooks.org/wiki/C Programming/Advanced data types

https://en.wikibooks.org/wiki/C Programming/Pointers _and_arrays

Reference for assembly:
https://en.wikibooks.org/wiki/X86 Assembly/GAS_Syntax

https://wiki.osdev.org/Inline_Assembly

https://en.wikibooks.org/wiki/C_Programming/Advanced_data_types
https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays
https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://wiki.osdev.org/Inline_Assembly

Thanks for attending! Happy hacking!

