
CS318 Pintos Project Lab0
Overview

William Wang (xwill@bu.edu)

mailto:xwill@bu.edu

Outline
• Administrivia

• Lab overview

• Environment Setup

• Dev Tool

• Tips

Administrivia

Lab0 deadline: 09/19 23:59PM Friday, individually
score = code (70%) + design doc (30%)
Submit through GradeScope (only lab 0)

Outline
• Administrivia

• Lab overview

• Environment Setup

• Dev Tool

• Tips

What Is Pintos?

• Pintos is a teaching operating system for 80x86
o Developed in 2005 for Stanford’s CS 140 OS class
o Small enough so entire code can be read and understood by students

• Pintos supports kernel threads, virtual memory, user programs, and
file system
o Premature or incomplete

In this course project, you will improve all of these areas of Pintos to make
it complete

Pintos Kernel(Pre Project)

Pintos Kernel(Post Project)

Lab 0 Overview

• Lab 0 is a warm-up exercise
• Preparing you for the later Pintos projects

• In Lab 0, you will:

• Install and boot Pintos
• Go through the PC Bootstrap
• Learn how to debug Pintos in QEMU and Bochs
• Add a tiny kernel monitor to Pintos

https://yigonghu.github.io/EC440/fall25/projects/lab0

https://yigonghu.github.io/EC440/fall25/projects/lab0

Lab 1 Overview
• Extending the functionality of Pintos thread system

Lab 2 Overview
• Enable user programs to interact with the OS via system calls

Lab 3 Overview
• Implement the virtual memory management

Lab 4 Overview
• Extending basic filesystem to hierarchical filesystem

Pintos Kernel(Post Project)

Pintos Source Code Overview

https://jhu-cs318.github.io/pintos-doxygen/html/files.html

https://jhu-cs318.github.io/pintos-doxygen/html/files.html

Pintos Source Tree
• threads/

○ Source code for the base kernel, which you will modify starting in project 1

• userprog/
○ Source code for the user program loader, which you will modify starting with project 2

• vm/
○ An almost empty directory. You will implement virtual memory here in project 3.

• filesys/
○ Source code for a basic file system. You will use this file system starting with project 2,

but you will not modify it until project 4

Pintos Source Tree
• devices/

○ Source code for I/O device interfacing: keyboard, timer, disk, etc. You will
modify the timer implementation in project 1.

• lib/

○ An implementation of a subset of the standard C library.

• tests/

○ All the test cases for each project

• examples/

○ Example user programs for use starting with project 2

Pintos Source Tree
• misc/

• utils/

○ These files may come in handy if you decide to try working with Pintos on your
own machine. Otherwise, you can ignore them

Outline
• Administrivia

• Lab 0 overview

• Environment Setup

• Dev Tool

• Tips

Host machine

Pintos Running Environment
• Pintos can run and debug in

o Emulated environment
o Real hardware

In this course, we will use
emulated environment.

Pintos Apps

Pintos kernel

Emulator

Bare-metal machine

Host OS

Pintos Apps

Pintos kernel

Environment
• Required Tools for PintOS

o 80x86 cross-compiler toolchain for 32-bit architecture
➢ C compiler, assembler, linker, and debugger.

o x86 emulator
➢ QEMU or Bochs

• Working Environment
• SCC lab machine
• Pre-made docker/utm image
• Your own machine

Use premade docker/virtual machine image

• Premade containers already have toolchains installed
• Environments are setup in advance, use out-of-the-box

• Useful Resource

• Docker image
docker run -it —name pintos buec440/pintos bash

• UTM image
To be added

Installing Pintos on You Own Machine

• You may want to work on your own machines to be more
productive
• Need to build the toolchain

• Useful Links

• Build script (tested on Mac, Ubuntu and Fedora)
pintos/src/misc/toolchain-build.sh

• Installation guide
https://yigonghu.github.io/EC440/fall25/projects/setup

https://yigonghu.github.io/EC440/fall25/projects/setup

Environment setting on SCC Lab Machine

• CS lab machines already have required tools installed
• To include tools, you need source the ec440 tools

o Change working directory into /projectnb/ec440/projects and:
source envsetup.sh

• Build pintos
o git clone https://github.com/yigonghu/ec440-pintos.git
o cd pintos/src/threads
o make

Outline
• Administrivia

• Lab 0 overview

• Environment Setup

• Dev Tool

• Tips

GDB
• “GNU Debugger”
• A debugger for several languages, including C and C++
• The Pintos uses GDB as the default debugging tool.
• Online manual

https://sourceware.org/gdb/current/onlinedocs/gdb/

https://sourceware.org/gdb/current/onlinedocs/gdb/

CGDB
• CGDB

o A lightweight curses interface to GDB
o Standard gdb console
o A split screen view that displays the source

code
• Strongly recommend using CGDB to debug

Pintos
• Reference

https://cgdb.github.io/

https://cgdb.github.io/

PEDA
• PEDA

o An extension for GDB written in
Python

o Standard gdb console
o A split screen view that displays

registers, assembly and stack

• Reference
https://github.com/longld/peda

https://github.com/longld/peda

How to Use CGDB to Debug A Toy Program?

The given code computes the
factorial of a number erroneously.
The program always outputs 0,
regardless of the input

Starting Up CGDB
• To run the cgdb, just first try “cgdb <filename>” (build with `gcc -g`)

Running Program
• To run the buggy program, use:

(gdb) run

• This runs the program
➢ If it has no serious problems, the program should run fine here too.
➢ If the program did have issues, then you should get some useful

information like the line number where it crashed, and parameters to the
function that caused the error

Setting Breakpoints
• What if the program output doesn’t match your expectation?

o Step through your code a bit at a time, until you arrive upon the error
• Breakpoints can be used to stop the program run in the middle, at a

designated point.

Run Program with breakpoints
• Once you’ve set a breakpoint, you can try using the run command again, This

time, it should stop where you tell it to.

Step Into Code
• You can single-step (execute just the next line of code) by

typing “step.” This gives you really fine-grained control over
how the program proceeds. You can do this a lot.

How to Check The Variable Change?
• Setting Watchpoints

o Watchpoints interrupt the program whenever a watched variable’s value
is modified

Checking the Value of Variable

• After running the program, We've found the first bug! result is
supposed to be evaluated by multiplying 3 * 2 * 1 but here the
multiplication starts from 2. To correct it, we have to change
the loop a little bit, but before that, lets see if the rest of the
calculation is correct

GDB on Pintos (1)
• Pintos uses gdb's remote debugging feature

• Debugging Pintos is a two-step process
o Starting pintos with gdb option: pintos --gdb -- run mytest
o A second terminal to invoke GDB on kernel image: pintos-gdb kernel.o
o Within the GDB shell, issue command: target remote localhost:1234
▪ short-hand for the command: debugpintos

• If using lab machine, you need to use a custom port to avoid port
conflict error: --gdb-port = port_number
o Use the same port number in GDB: target remote localhost:port_number

GDB on Pintos (2)

• CGDB
o The CS lab machine has cgdb installed
o pintos-gdb will automatically prefer cgdb if it's available

Debugging On Pintos
• We introduce a bug into Pintos by commenting the initialization of

ready_list, which will cause an assertion error in Pintos

Debugging On Pintos
• To locate the root cause, we first look at the error log in Pintos. We

find that the assertion is triggered in list.c file

Debugging On Pintos
• To trace the call stack that cause the failure, we set a break point in

list.c:170 and run the Pintos

Debugging On Pintos
• Then we continue to run the program until it reaches the assertion

error. We check the call stack of list_insert using `backtrace` (`bt`).
We find that the thread_unblock function calls the insert_error.

Debugging On Pintos
• We then check the value of ready_list and we find that the list is not

initialized yet. Then we know the root cause is the uninitialized data.

Git

• Be familiar with daily commands
○ git clone
○ git commit
○ git push
○ ...

• A little more advanced
○ git checkout
○ git reset
○ ...

• Reference
https://www.atlassian.com/git/tutorials
https://www.katacoda.com/courses/git

https://www.atlassian.com/git/tutorials
https://www.katacoda.com/courses/git

Tips for using Git

• When using Git, you should:
o Use .gitignore to avoid checking in unnecessary files (e.g., object files)
o Write meaningful commit messages
o Create branches for different exercises/features
o Use pull requests to merge feature branch into master

o Have teammates review the changes
o Integrate your team's changes early and often

• When using Git, you should avoid:
o Check in object files
o Use git add -A command to commit all the files

o Use git status to see modified & staged files
o Use git push --force to force remote update

IDE settings: vim
• Vim is sufficient for daily development on servers

o Recommended Vim plugins: NERDTree, YouCompleteMe, COC, fzf.vim
o Recommended NeoVim plugins: COC.nvim
o Plugin manager: vim-plug

• cscope is a developer's tool for browsing source code
o Reference: http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-

and-cscope
o Use cscope in Pintos: https://www.cs.jhu.edu/~huang/cs318/fall21/

project/pintos_12.html#SEC170
o `make cscope` in src/

http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
http://tuxdiary.com/2012/04/03/code-browsing-using-ctags-and-cscope
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_12.html#SEC170

IDE settings: vim
• "Inconvenient" to use at the beginning

o Try to force yourself using them
o Typing keys is in general much faster than mouse-click
o Once you develop the habit, this set of tools will be your lifetime

companions that boost programming productivity

IDE settings: VSCode
• VSCode is a GUI IDE by Microsoft
o Free of charge
o Easy to use for remote development via SSH

• Cache locally, sync automatically, execute remotely
• Install “Remote Development Extension Pack” plugin
• Connect to a remote host
• Remote Development Reference: https://code.visualstudio.com/

docs/remote/ssh

https://code.visualstudio.com/docs/remote/ssh
https://code.visualstudio.com/docs/remote/ssh

QEMU/bochs
• QEMU: faster

pintos --qemu …
make check SIMULATOR=--qemu

• Bochs: support reproducible mode
pintos --bochs ...
make check SIMULATOR=--bochs
(For reproducible mode, refer to http://bochs.sourceforge.net/doc/docbook/user/
bochsrc.html, section 4.3.16)

(Lab 1 will use bochs & Lab 2-4 will use QEMU. Change SIMULATOR for local test-only.)

http://bochs.sourceforge.net/doc/docbook/user/bochsrc.html
http://bochs.sourceforge.net/doc/docbook/user/bochsrc.html

Outline
• Administrivia

• Lab 0 overview

• Environment Setup

• Dev Tool

• Tips

Development Suggestions

• Bad coding habit
o Divided the assignment into pieces
o Each group member worked on his or her piece in isolation until just

before the deadline
o Reconvened to combine their code and submit

• Why is it bad?
o Conflict with each other
o Requiring lots of last-minute debugging

Development Suggestions

• Good coding habit
o Integrating your team's changes early and often
o Do incremental function testing
o Using a source code control system such as Git
o Read the compiler WARNINGs

• This is less likely to produce surprises
• These systems also make it possible to review changes and, when a change

introduces a bug, drop back to working versions of code

Code Style

• Can your group member and TAs understand your code easily?
o E.g.: GNU code style: http://www.gnu.org/prep/standards/
o Limit source file & function lines
o Following the naming convention
o Adding meaningful comments
o If you remove existing Pintos code, delete it from your source file entirely

• The style will be accounted for during grading
o Bad code or code with messy styles will get points deducted even if it

passes tests.

http://www.gnu.org/prep/standards/

General Tips

● Think about design before you start coding

○ You can run through your design with the TAs or Professor if you are
unsure

● Reserve enough time to write design doc (30% of score)

● Carefully read the project documentation pintos.pdf/.html

○ The appendix of the doc is particularly helpful
○ Many confusions come from not reading the

documentation thoroughly

Reference
Project Website

https://yigonghu.github.io/EC440/fall25/projects/
Pintos

https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_7.html
CGDB

https://cgdb.github.io/
Git

https://www.atlassian.com/git/tutorials

https://yigonghu.github.io/EC440/fall25/projects/
https://www.cs.jhu.edu/~huang/cs318/fall21/project/pintos_7.html
https://cgdb.github.io/
https://www.atlassian.com/git/tutorials

Recap C/Assemble Language

Reference for C:
https://en.wikibooks.org/wiki/C_Programming/Advanced_data_types
https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays

Reference for assembly:
https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://wiki.osdev.org/Inline_Assembly

https://en.wikibooks.org/wiki/C_Programming/Advanced_data_types
https://en.wikibooks.org/wiki/C_Programming/Pointers_and_arrays
https://en.wikibooks.org/wiki/X86_Assembly/GAS_Syntax
https://wiki.osdev.org/Inline_Assembly

Thanks for attending! Happy hacking!

