CS318 Pintos Project
Labl Overview

William Wang (xwill@bu.edu)

e Lab 1 deadline: Thursday 10/13 11:59 pm EDT
o Estimated time: ~ 50 person-hours per group

o Late policy: 6-day (144hrs) tokens each team in total

o Use it wisely. Recommend reserving them for later labs

o Fill out the late hours form before the deadline (link in lab 1
description web page)

o Fill out the late hours form again to indicate you are done (don’t
forget to)

9/26/25 EC 440 Lab 1 Overview 2

‘Background
e Lab 1

e TIPS

9/26/25 EC 440 Lab 1 Overview 3

Thread: A Quick Review

« Threads are a sequential execution stream within a process

o Thread control blocks (TCB) save state of a thread

« Thread is bound to a single process

o Shared heap, static data and code
o Dedicated stack

9/26/25 EC 440 Lab 1 Overview 4

Thread In A Process: A Quick Review

Stack (T1) [Thread 1
!
Thread 2 — Stack (T2)
|
Stack (T3) <— Thread 3
|
Heap
Static Data l
l ~— PC (T3) 1
PC (T2) — Code
B PC (T1)

9/26/25 EC 440 Lab 1 Overview 5

Thread In Pintos

e Pintos thread struct

o Represents a thread or a user process
o Will be modified inlab 1

struct thread

{
tid t tid; /* Thread identifier. */
enum thread status status; /* Thread state. */
char name[16]; /* Name (for debugging purposes). */
uint8 t *stack; /* Saved stack pointer. */
int priority; /* Priority. */
struct list elem allelem; /* List element for all threads list. */
struct list elem elem; /* List element. */
unsigned magic; /* Detects stack overflow. */
}i

9/26/25 EC 440 Lab 1 Overview 6

The Thread Stack In Pintos

* A small, fixed-size execution stack (4 kB)

kernel stack

v
grows downward

sizeof (struct thread) +----------------------—-- +
| magic |

I : |

| : |

| status |

| tid |

@ kB 4-------ccceccccccccccnccccnccnn-- +

9/16/20 CS318/418/618 Lab 1 Overview 7

Thread System

o thread create() starts new threads
o Added to all list and ready list

« Periodically, the timer interrupt fires
o Current thread stops running
o Timer interrupt calls schedule()

9/26/25 EC 440 Lab 1 Overview 8

Thread Schedule

static void schedule (void) { Choose the next
running thread from

struct thread *cur = running_thread (); 7] theready_list
struct thread *next @(t_thread_to_run‘b

struct thread *prev = NULL;

if (cur != next) prev =8witch_threadsycur, next);
thread schedule_tail (prev); ‘\

} Context switch

9/26/25 EC 440 Lab 1 Overview 9

|ldle Thread

o There is always one thread running in the system

e Known as the idle thread
o Executes when there are no other threads to run

9/26/25 EC 440 Lab 1 Overview 10

Important Thread Functions(1)

o thread tick (void):
o Called by the timer interrupt at each timer tick

o thread block ()

o thread unblock (struct thread *thread)

o thread current (void)
o Returns the running thread

9/26/25 EC 440 Lab 1 Overview 11

Important Thread Functions(2)

o thread yield (void)
o Yields the CPU to the scheduler

o thread foreach (thread action func *action, void *aux)
o Iterates over all threads t and invokes action on each

In lab 1, you need to use all these
functions and modify most of them

9/26/25 EC 440 Lab 1 Overview 12

« Concurrent threads read/modified/written a shared variable

x Iis a global variable initialized to 0

Thread 1 Thread 2
void foo() void bar()
{ {

X++; X—=3
} }

o After thread 1 and thread 2 finishes, x could be
o 01,-1

9/26/25 EC 440 Lab 1 Overview 13

Synchronization

« How to prevent race condition?
o Serializing access to shared resource

o Disabling interrupts: Turns off thread preemption, so only
one thread can run

e Synchronization primitives: in threads/synch.h

o Semaphores
o Locks
o Condition variables

9/26/25 EC 440 Lab 1 Overview 14

Synchronization In Pintos: Disabling Interrupts

« The crudest way to do synchronization is to disable interrupts
o Prevent the CPU from responding to interrupts
o No other thread will preempt the running thread
o Most of times, you should not use it directly
o use synchronization primitives instead

e Reference:

https://vigonghu.github.io/EC440/fall25/projects/reference/
synchronization

9/26/25 EC 440 Lab 1 Overview 15

https://yigonghu.github.io/EC440/fall25/projects/reference/synchronization
https://yigonghu.github.io/EC440/fall25/projects/reference/synchronization

Interrupts APIs

o intr_get_level (void)
o Returns the current interrupt state
o intr_set_level (enum intr_level level)

o Turns interrupts on or off according to level
o Returns the previous interrupt state

e intr_enable (void)

o Turns interrupts on. Returns the previous interrupt state
« intr_disable (void)

o Turns interrupts off. Returns the previous interrupt state

9/26/25 EC 440 Lab 1 Overview 16

Synchronization In Pintos: Semaphores

« Asemaphore is a nonnegative integer with two operator

o "Down": wait for the value to become positive, then decrement it
o "Up" :increment the value and wake up one waiting thread

« A semaphore initialized to 0
o Waiting for an event that will happen exactly once

« A semaphore initialized to 1
o Controlling access to a resource

9/26/25 EC 440 Lab 1 Overview 17

Semaphore APIs

e Defined in “threads/synch.h”

« void sema_linit (struct semaphore *sema, unsigned value)
o Initializes sema with the given initial value

o void sema_down (struct semaphore *sema)

e void sema_up (struct semaphore *sema)

9/26/25 EC 440 Lab 1 Overview 18

Synchronization In Pintos: Lock

 Alockis like a semaphore with an initial value of 1
o “release” operation = “up”

o “acquire” operation = “down”
o Only the owner of lock can release the lock

9/26/25 EC 440 Lab 1 Overview 19

Lock APIs

o void lock_init (struct lock *lock)
« void lock_acquire (struct lock *lock)

« void lock_release (struct lock *lock)

9/26/25 EC 440 Lab 1 Overview 20

Synchronization In Pintos: Monitor

« A monitor = data + lock (monitor lock) + condition variables
o Acquiring the monitor lock
Waiting for a condition to become true and release the lock

O
o If the condition is true, wake up one waiter or “broadcast”
o Access the data

9/26/25 EC 440 Lab 1 Overview 21

Condition Variable APIs

void cond _init (struct condition *cond)

void cond_wait (struct condition *cond, struct lock */ock)

o Atomically releases lock and waits for cond to be signaled
o When it returns, lock is acquired again

void cond_signal (struct condition *cond, struct lock */ock)
void cond_broadcast (struct condition *cond, struct lock *)

9/26/25 EC 440 Lab 1 Overview 22

e Background

‘Lab 1

e TIPS

9/26/25 EC 440 Lab 1 Overview 23

The Goal of Lab 1

Priority Scheduling | Alarm

MLFQS Scheduling | Clock

P1: Kernel-mode Test Cases

Threading
Simple Scheduler

Pintos Kernel

Boot Support

Priority Scheduling Alarm
MLFQS Scheduling | Clock

P1: Kernel-mode Test Cases

P1: Priority
Inheritance

P1: Alarm
Clock

P1: Priority Scheduler

Threading

Device Support
Simple Scheduler

Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

Pintos Kernel

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCl, IDE

Boot Support

Support Code

9/26/25

9
Public Tests Support Code

EC 440 Lab 1 Overview

Students Create Public Tests

24

The Goal of Lab 1

« Reimplement the timer_sleep() function
o Avoid busy waiting

« Implement priority scheduling
o High priority threads execute before low priority

e Implement a multilevel feedback queue scheduler
o Reduce the average response time for running jobs

9/26/25 EC 440 Lab 1 Overview 25

Alarm Clock

« Reimplement timer _sleep(num_ticks)
void timer_sleep (int64_t ticks) {
int64 t start ={j ticks ();

your implementation

}

Avoid busy wait Busy Wait

9/26/25 EC 440 Lab 1 Overview 26

Alarm Clock

Timer interrupt:
TIME_SLICE reached

admitted interrupt

scheduled

I/O or Event
completion

/O Event or wait

timer_sleep()
Thread BLOCKED

Timer expired
Thread READY

9/26/25 EC 440 Lab 1 Overview 27

Timer Interrupt

o PIT (Programmable Interval Timer)
« E.g.Intel 8254
e Resides on the motherboard
o External microcontroller (“external” as to CPU)
o Generate timer interrupt pulse at a fixed rate
« Can’t be simulated with sequential instruction execution
o OS kernel sets up timer at startup
o “event-driven”

9/26/25 EC 440 Lab 1 Overview 28

Timer Interrupt

/* Sets up the timer to interrupt TIMER FREQ times per second,
and registers the corresponding interrupt. */
void
timer init (void)
{
pit configure channel (0, 2, TIMER FREQ);
intr register ext (0x20, timer interrupt, "8254 Timer'");
}
/* Timer interrupt handler. */

static void
timer interrupt (struct intr frame *args UNUSED)

{
ticks++;
thread tick ();

}

Pintos:

timer.c
9/26/25 EC 440 Lab 1 Overview 29

Timer Interrupt

o Interrupt state when entering timer_interrupt
« INTR_OFF
o An external interrupt (typically generated by hardware)
« Other kind of interrupt may choose to keep INTR_ON
o E.g.:syscall, most exceptions
o Interrupt state after return (after iret in intr-stub.S)
« INTR_ON

9/26/25 EC 440 Lab 1 Overview 30

Design Hints for Alarm Clock

« How to sleep a thread?
o Leveraging existing APIs that can sleep the thread
o Looking at the synchronization slides

« How to find a sleeping thread?

« How to wake up a sleep thread?
o Look at the timer_interrupt handler in Pintos

9/26/25 EC 440 Lab 1 Overview 31

Scheduling

o Scheduling Policy
o FIFO
o Priority
o MLFQ

admitted interrupt

scheduled

I/O or Event
completion

/O Event or wait

9/26/25 EC 440 Lab 1 Overview 32

Priority Scheduling

e Implement priority scheduling in Pintos

o Thread with highest priority is always running

o Highest priority waiting thread should be awoken first

o 0-63 priorities, higher number represents higher priority
o E.g., priority 6 > priority 2

e The challenging part of priority scheduling
o Priority donation, multiple donations and nest donation

9/26/25 EC 440 Lab 1 Overview 33

Priority Scheduling Examples

Running thread CPU scheduler
: Thread 1

Priority O Thread 2
l Priority 63

Ready queue

Largest Priority
Wait queue
63

|

9/26/25 EC 440 Lab 1 Overview 34

=N ()

Scenario 1 : Acquiring Lock

CPU scheduler

Running thread

Ready queue 2 T3 T4
3 2 4

Largest Priority

Thread 1
Priority 10

1 r‘] J Priority 4

Wait queue ™ 17 Tl

2 20 10

9/26/25 EC 440 Lab 1 Overview 35

Scenario 2 : Unlock Thread

Running thread CPU scheduler
20 v
Thread 1
Priority 10

Thread 7
l Priority 20

|

Unblock m
Ny = T

Largest Priority

Ready queue

Wait queue

9/26/25 EC 440 Lab 1 Overview 36

Problematic Scenario: Priority Inversion

CPU scheduler

Thread 2
Priority 1
Thread 1
l Priority 3

|

Running thread

Ready queue

Degrade to priority 1
o

3

Wait queue

9/26/25 EC 440 Lab 1 Overview 37

Priority Donation

Return to
original priority

© .
Q Thread 2 red

Priori

-

Running thread

4

Priority 1
tries to acquire
lock that T2 holds

Ready queue

LOCK

Running

UNLOCK

Running

UNLOCK
Block queue

II

9/26/25 EC 440 Lab 1 Overview 38

Multiple Donation

Thread 2

Priority 1
Thread 3 e e

Priorit Threa

LOCK B . .
Priori
Running

O
©

LOCK B

n

UNLOCK A
Running Running
UNLOCK UNLOCK

Dead

iiig

9/26/25 EC 440 Lab 1 Overview 39

Nested Donation

Thread 2

Priority 1
l a Thread 3

° Thread 1
Priorit@

LOC

Running

UNLOCK A

Running
UNLOCK B UNLOCK B

UNLOCK A

Dead

G <
2
>

9/26/25 EC 440 Lab 1 Overview

40

Advanced Scheduler

BSD scheduler computes thread CPU usage statistics to
calculate thread priorities

0 thread set priority should beignored in this mode

No priority donation

-mlfgs kernel option:
o Choose a scheduling algorithm policy at Pintos startup time

Implement a simple fixed-point arithmetic library

9/26/25 EC 440 Lab 1 Overview 41

Advanced Scheduler - Niceness

« Thread priority is dynamically determined by the scheduler
using a formula

e Niceness

o 0->does not affect thread priority
o >0 ->decreases the priority of a thread (max of 20)
o <0 ->tends to take away CPU time from other threads (min of -20)

9/26/25 EC 440 Lab 1 Overview 42

Niceness API

o intthread get nice (void)
o Returns the current thread's nice value

« void thread set_nice (int new_nice)

o Sets the current thread's nice value to new_nice
o Recalculates the thread's priority

9/26/25 EC 440 Lab 1 Overview 43

Advanced Scheduler - Calculate Priority

e Priorities range from 0 to 63

e Calculated every 4rth
o For every thread where recent _cpu has changed

priority = PRI_MAX - (recent_cpu/ 4) - (nice * 2),
recent_cpu = (2*load_avg)/(2*load_avg + 1) * recent_cpu + nice.

load_avg = (59/60)*load_avg + (1/60)*ready_threads.

9/26/25 EC 440 Lab 1 Overview 44

Fixed-Point Real Arithmetic

« recent _cpu and load avg are real numbers

« You need to implement a library for fixed-Point Arithmetic

« Reference

https://vigonghu.github.io/EC440/fall25/projects/reference/bsd#6-
fixed-point-real-arithmetic

9/26/25 EC 440 Lab 1 Overview 45

https://yigonghu.github.io/EC440/fall25/projects/reference/bsd#6-fixed-point-real-arithmetic
https://yigonghu.github.io/EC440/fall25/projects/reference/bsd#6-fixed-point-real-arithmetic

e Background

e Lab 1

o TIPS
=)

9/26/25 EC 440 Lab 1 Overview 46

o Distributed version management
« With git, you can

« Easily track the changes
e Recover files in the past

e Concurrently develop the project and safely merge parts

9/26/25 EC 440 Lab 1 Overview 47

Git — basic operations

e Locations
« Working tree
e Index (or called “staging area”)
« Local repo
e Remote repo

o Sync files between different locations

e« Clone

o Add

e Commit
e Push

9/26/25 EC 440 Lab 1 Overview 48

git clone

e Copy the whole remote repo to the local

« git clone <remote repo> [<local directory>]

« S gitclone https://qgithub.com/jhu-cs318-fall22/pintos-lab-xyz

> git clone https://github.com/jhu-cs318/pintos.git
Cloning into 'pintos'...

remote: Enumerating objects: 716, done.

remote: Counting objects: 100% (52/52), done.

remote: Compressing objects: 100% (33/33), done.

remote: Total 716 (delta 21), reused 32 (delta 19), pack-reused 664
Receiving objects: 100% (716/716), 362.48 KiB | 4.65 MiB/s, done.
Resolving deltas: 100% (123/123), done.

9/26/25 EC 440 Lab 1 Overview 49

https://github.com/jhu-cs318-fall22/pintos-lab-xyz

« Copy files from workspace to the index

o git add <file path...>

« S gitadd src/threads/thread.c

9/26/25 EC 440 Lab 1 Overview 50

git commit

e Copy files from index to the local repo

e git commit

e Edit the commit message in the opened editor and save it

Implement scheduler

2 1

Changes to be committed:
modified src/threads/thread.c

9/26/25 EC 440 Lab 1 Overview 51

git push

« Update commits on a branch from local repo to the remote

e git push [<remote repo>] [<branch name>]

e S gitpush

> git push

Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.
Delta compression using up to 8 threads
Compressing objects: 100% (5/5), done.

Writing objects: 100% (5/5), 454 bytes | 454.00 KiB/s, done.
Total 5 (delta 3), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (3/3), completed with 3 local objects.
To https://github.com/superobertking/pintos-showcase.git
ab69995. .b4fffb7 master -> master

9/26/25 EC 440 Lab 1 Overview 52

e Branches
e Merge
e Pull request

Demo

9/26/25 EC 440 Lab 1 Overview 53

Git & GitHub

e More...
e Revert changes
e Cherry-picking
e Edit commit history
e Squash commits

9/26/25 EC 440 Lab 1 Overview 54

Coding Tips

« Read the document thoroughly & carefully before coding
o Understand Pintos thread system and synchronization
o Read base code also helps understanding

« Read the desigh document template first and work on it as
you write code and debug

« Don’t code and design together
o Have a design/solution in your mind first, then starting coding

9/26/25 EC 440 Lab 1 Overview 55

Debugging Suggestion

« Debug with gdb, not with printf
« Get used to debugger
« printfinternally uses locks and changes interrupt state
e Can mess up with scheduling
e Look at the test code during the debugging
« When encountering kernel panic or assertion violations
o Figure out the call stack first
o Double check the workflow by GDB

9/26/25 EC 440 Lab 1 Overview 56

e To receive full credit

o Working, well designed code that completes all tests(70%)
o A complete, well written design document(30%)

e Your coding style and design matters

« All code will be scanned by plagiarism detection software

9/26/25 EC 440 Lab 1 Overview 57

Thanks for attending this session!

