
CS318 Pintos Project
Lab1 Overview

William Wang (xwill@bu.edu)

EC 440 Lab 1 Overview

Administrivia

• Lab 1 deadline: Thursday 10/13 11:59 pm EDT
o Estimated time: ~ 50 person-hours per group

• Late policy: 6-day (144hrs) tokens each team in total
o Use it wisely. Recommend reserving them for later labs
o Fill out the late hours form before the deadline (link in lab 1

description web page)
o Fill out the late hours form again to indicate you are done (don’t

forget to)

9/26/25 2

EC 440 Lab 1 Overview

Outline
• Background

• Lab 1

• Tips

9/26/25 3

EC 440 Lab 1 Overview

Thread: A Quick Review

• Threads are a sequential execution stream within a process

• Thread control blocks (TCB) save state of a thread

• Thread is bound to a single process
o Shared heap, static data and code
o Dedicated stack

9/26/25 4

EC 440 Lab 1 Overview

Thread In A Process: A Quick Review

9/26/25 5

EC 440 Lab 1 Overview

Thread In Pintos

• Pintos thread struct
o Represents a thread or a user process
o Will be modified in lab 1

9/26/25 6

EC 440 Lab 1 Overview

The Thread Stack In Pintos

• A small, fixed-size execution stack (4 kB)

9/26/25 7

EC 440 Lab 1 Overview

Thread System

• thread_create() starts new threads
o Added to all_list and ready_list

• Periodically, the timer interrupt fires
o Current thread stops running
o Timer interrupt calls schedule()

9/26/25 8

EC 440 Lab 1 Overview

Thread Schedule

static void schedule (void) {
 struct thread *cur = running_thread ();
 struct thread *next = next_thread_to_run ();
 struct thread *prev = NULL;

 if (cur != next) prev = switch_threads (cur, next);
 thread_schedule_tail (prev);
}

9/26/25 9

Choose the next
running thread from

the ready_list

Context switch

EC 440 Lab 1 Overview

Idle Thread

• There is always one thread running in the system
• Known as the idle thread
o Executes when there are no other threads to run

9/26/25 10

EC 440 Lab 1 Overview

Important Thread Functions(1)

• thread_tick (void):
o Called by the timer interrupt at each timer tick

• thread_block ()

• thread_unblock (struct thread *thread)

• thread_current (void)
o Returns the running thread

9/26/25 11

EC 440 Lab 1 Overview

Important Thread Functions(2)

• thread_yield (void)
o Yields the CPU to the scheduler

• thread_foreach (thread_action_func *action, void *aux)
o Iterates over all threads t and invokes action on each

9/26/25 12

In lab 1, you need to use all these
functions and modify most of them

EC 440 Lab 1 Overview

Race condition

• Concurrent threads read/modified/written a shared variable

• After thread 1 and thread 2 finishes, x could be
o 0, 1, -1

9/26/25 13

EC 440 Lab 1 Overview

Synchronization

• How to prevent race condition?
o Serializing access to shared resource

• Disabling interrupts: Turns off thread preemption, so only
one thread can run

• Synchronization primitives	: in threads/synch.h
o Semaphores
o Locks
o Condition variables

9/26/25 14

EC 440 Lab 1 Overview

Synchronization In Pintos: Disabling Interrupts

• The crudest way to do synchronization is to disable interrupts
o Prevent the CPU from responding to interrupts
o No other thread will preempt the running thread
o Most of times, you should not use it directly
o use synchronization primitives instead

• Reference:
https://yigonghu.github.io/EC440/fall25/projects/reference/
synchronization

9/26/25 15

https://yigonghu.github.io/EC440/fall25/projects/reference/synchronization
https://yigonghu.github.io/EC440/fall25/projects/reference/synchronization

EC 440 Lab 1 Overview

Interrupts APIs

• intr_get_level (void)
o Returns the current interrupt state

• intr_set_level (enum intr_level level)
o Turns interrupts on or off according to level
o Returns the previous interrupt state

• intr_enable (void)
o Turns interrupts on. Returns the previous interrupt state

• intr_disable (void)
o Turns interrupts off. Returns the previous interrupt state

9/26/25 16

EC 440 Lab 1 Overview

Synchronization In Pintos: Semaphores

• A semaphore is a nonnegative integer with two operator
o "Down": wait for the value to become positive, then decrement it
o "Up" : increment the value and wake up one waiting thread

• A semaphore initialized to 0
o Waiting for an event that will happen exactly once

• A semaphore initialized to 1
o Controlling access to a resource

9/26/25 17

EC 440 Lab 1 Overview

Semaphore APIs

• Defined in “threads/synch.h”

• void sema_init (struct semaphore *sema, unsigned value)
o Initializes sema with the given initial value

• void sema_down (struct semaphore *sema)

• void sema_up (struct semaphore *sema)

9/26/25 18

EC 440 Lab 1 Overview

Synchronization In Pintos: Lock

9/26/25 19

EC 440 Lab 1 Overview

Lock APIs

• void lock_init (struct lock *lock)

• void lock_acquire (struct lock *lock)

• void lock_release (struct lock *lock)

9/26/25 20

EC 440 Lab 1 Overview

Synchronization In Pintos: Monitor

• A monitor = data + lock (monitor lock) + condition variables
o Acquiring the monitor lock
o Waiting for a condition to become true and release the lock
o If the condition is true, wake up one waiter or “broadcast”
o Access the data

9/26/25 21

EC 440 Lab 1 Overview

Condition Variable APIs

• void cond_init (struct condition *cond)

• void cond_wait (struct condition *cond, struct lock *lock)
o Atomically releases lock and waits for cond to be signaled
o When it returns, lock is acquired again

• void cond_signal (struct condition *cond, struct lock *lock)
• void cond_broadcast (struct condition *cond, struct lock *)

9/26/25 22

EC 440 Lab 1 Overview

Outline
• Background

• Lab 1

• Tips

9/26/25 23

EC 440 Lab 1 Overview

The Goal of Lab 1

9/26/25 24

EC 440 Lab 1 Overview

The Goal of Lab 1

9/26/25 25

• Reimplement the timer_sleep() function
o Avoid busy waiting

• Implement priority scheduling
o High priority threads execute before low priority

• Implement a multilevel feedback queue scheduler
o Reduce the average response time for running jobs

EC 440 Lab 1 Overview

Alarm Clock

• Reimplement timer_sleep(num_ticks)
void timer_sleep (int64_t ticks) {
 int64_t start = timer_ticks ();
 while (timer_elapsed (start) < ticks)
 thread_yield ();
}

9/26/25 26

 your implementation

Busy WaitAvoid busy wait

EC 440 Lab 1 Overview

Alarm Clock

9/26/25 27

Ready Running

terminat
ed

New

Waiting

admitted

scheduled

interrupt

I/O Event or waitI/O or Event
completion

Exit

Timer interrupt:
TIME_SLICE reached

timer_sleep()
Thread BLOCKED

Timer expired
Thread READY

EC 440 Lab 1 Overview

Timer Interrupt

• PIT (Programmable Interval Timer)
• E.g. Intel 8254
• Resides on the motherboard

• External microcontroller (“external” as to CPU)
• Generate timer interrupt pulse at a fixed rate

• Can’t be simulated with sequential instruction execution
• OS kernel sets up timer at startup

• “event-driven”

9/26/25 28

EC 440 Lab 1 Overview

Timer Interrupt

9/26/25 29

/* Sets up the timer to interrupt TIMER_FREQ times per second,
 and registers the corresponding interrupt. */
void
timer_init (void)
{
 pit_configure_channel (0, 2, TIMER_FREQ);
 intr_register_ext (0x20, timer_interrupt, "8254 Timer");
}
/* Timer interrupt handler. */
static void
timer_interrupt (struct intr_frame *args UNUSED)
{
 ticks++;
 thread_tick ();
}

Pintos:
timer.c

EC 440 Lab 1 Overview

Timer Interrupt

• Interrupt state when entering timer_interrupt
• INTR_OFF
• An external interrupt (typically generated by hardware)

• Other kind of interrupt may choose to keep INTR_ON
• E.g.: syscall, most exceptions

• Interrupt state after return (after iret in intr-stub.S)
• INTR_ON

9/26/25 30

EC 440 Lab 1 Overview

Design Hints for Alarm Clock

• How to sleep a thread?
o Leveraging existing APIs that can sleep the thread
o Looking at the synchronization slides

• How to find a sleeping thread?

• How to wake up a sleep thread?
o Look at the timer_interrupt handler in Pintos

9/26/25 31

EC 440 Lab 1 Overview

Scheduling

9/26/25 32

Ready Running

terminat
ed

New

Waiting

admitted

scheduled

interrupt

I/O Event or waitI/O or Event
completion

Exit

• Scheduling Policy
o FIFO
o Priority
o MLFQ

EC 440 Lab 1 Overview

Priority Scheduling

• Implement priority scheduling in Pintos
o Thread with highest priority is always running
o Highest priority waiting thread should be awoken first
o 0-63 priorities, higher number represents higher priority
o E.g., priority 6 > priority 2

• The challenging part of priority scheduling
o Priority donation, multiple donations and nest donation

9/26/25 33

EC 440 Lab 1 Overview

Priority Scheduling Examples

9/26/25 34

Running

Running

Running

Thread 1
Priority 0 Thread 2

Priority 63

CPU scheduler
T1
0

Running thread

Ready queue T2
63

Wait queue
Block

Largest Priority

T2
63

T1
0

T2
63

T1
0

EC 440 Lab 1 Overview

Scenario 1 : Acquiring Lock

9/26/25 35

Running

Thread 1
Priority 10

CPU scheduler
T1
10

Running thread

T2
3

T3
2

T5
1

T4
4

T6
2

T7
20

Block

T1
10

Largest Priority

T4
4

Running

Thread 4
Priority 4Ready queue

Wait queue

EC 440 Lab 1 Overview

Scenario 2 : Unlock Thread

9/26/25 36

Running

Thread 1
Priority 10

CPU scheduler
T1
10

Running thread

T2
3

T3
2

T5
1

T4
4

T6
2

T7
20

Largest Priority

Unblock

Thread 7
Priority 20

T7
20

T7
20

T1
10

Running

block

Ready queue

Wait queue

EC 440 Lab 1 Overview

Problematic Scenario: Priority Inversion

9/26/25 37

Running

Thread 2
Priority 1

CPU scheduler
Running thread

T2
1

T3
2

Running

Thread 1
Priority 3

T1
3

LOCK

LOCK

T1
3

T3
2

Degrade to priority 1

Ready queue

Wait queue

EC 440 Lab 1 Overview

Priority Donation

9/26/25 38

UNLOCK

LOCK

Thread 2
Priority 1

LOCK
Running

Thread 1
Priority 3

3

UNLOCK

Running

Return to
original priorityRunning thread

Ready queue T2
1

T3
2

Block queue T1
3

T2
3

T2
3

T2
1

T1
3

tries to acquire
lock that T2 holds

EC 440 Lab 1 Overview

Multiple Donation

9/26/25 39

UNLOCK A

LOCK A

Thread 2
Priority 1

LOCK A

Running

Thread 1
Priority 3

3

UNLOCK

Running

LOCK B

Thread 3
Priority 2

UNLOCK

Running

2

LOCK B

UNLOCK B

Dead
Dead

EC 440 Lab 1 Overview

Nested Donation

9/26/25 40

UNLOCK B

LOCK A

Thread 2
Priority 1

LOCK A
Running

Thread 1
Priority 3

3

UNLOCK A

Running

LOCK B

Thread 3
Priority 2

UNLOCK A

Running

2

LOCK B

UNLOCK B

Dead

Running

3

EC 440 Lab 1 Overview

Advanced Scheduler

• BSD scheduler computes thread CPU usage statistics to
calculate thread priorities
o thread_set_priority should be ignored in this mode

• No priority donation

• -mlfqs kernel option:
o Choose a scheduling algorithm policy at Pintos startup time

• Implement a simple fixed-point arithmetic library
9/26/25 41

EC 440 Lab 1 Overview

Advanced Scheduler - Niceness

• Thread priority is dynamically determined by the scheduler
using a formula

• Niceness
o 0 -> does not affect thread priority
o >0 -> decreases the priority of a thread (max of 20)
o <0 -> tends to take away CPU time from other threads (min of -20)

9/26/25 42

EC 440 Lab 1 Overview

Niceness API

• int thread_get_nice (void)
o Returns the current thread's nice value

• void thread_set_nice (int new_nice)
o Sets the current thread's nice value to new_nice
o Recalculates the thread's priority	

9/26/25 43

EC 440 Lab 1 Overview

Advanced Scheduler - Calculate Priority

• Priorities range from 0 to 63

• Calculated every 4rth
o For every thread where recent_cpu has changed

9/26/25 44

EC 440 Lab 1 Overview

Fixed-Point Real Arithmetic

• recent_cpu and load_avg are real numbers

• You need to implement a library for fixed-Point Arithmetic

• Reference
https://yigonghu.github.io/EC440/fall25/projects/reference/bsd#6-
fixed-point-real-arithmetic

9/26/25 45

https://yigonghu.github.io/EC440/fall25/projects/reference/bsd#6-fixed-point-real-arithmetic
https://yigonghu.github.io/EC440/fall25/projects/reference/bsd#6-fixed-point-real-arithmetic

EC 440 Lab 1 Overview

Outline
• Background

• Lab 1

• Tips

9/26/25 46

EC 440 Lab 1 Overview

Git
• Distributed version management

• With git, you can
• Easily track the changes
• Recover files in the past
• Concurrently develop the project and safely merge parts

9/26/25 47

EC 440 Lab 1 Overview

Git – basic operations
• Locations

• Working tree
• Index (or called “staging area”)
• Local repo
• Remote repo

• Sync files between different locations
• Clone
• Add
• Commit
• Push

9/26/25 48

EC 440 Lab 1 Overview

git clone
• Copy the whole remote repo to the local

• git clone <remote repo> [<local directory>]

• $ git clone https://github.com/jhu-cs318-fall22/pintos-lab-xyz

9/26/25 49

https://github.com/jhu-cs318-fall22/pintos-lab-xyz

EC 440 Lab 1 Overview

git add
• Copy files from workspace to the index

• git add <file path…>

• $ git add src/threads/thread.c

9/26/25 50

EC 440 Lab 1 Overview

git commit
• Copy files from index to the local repo

• git commit

• Edit the commit message in the opened editor and save it

9/26/25 51

EC 440 Lab 1 Overview

git push
• Update commits on a branch from local repo to the remote

• git push [<remote repo>] [<branch name>]

• $ git push

9/26/25 52

EC 440 Lab 1 Overview

GitHub
• Branches
• Merge
• Pull request

9/26/25 53

Demo

EC 440 Lab 1 Overview

Git & GitHub
• More…

• Revert changes
• Cherry-picking
• Edit commit history
• Squash commits
• ...

9/26/25 54

EC 440 Lab 1 Overview

Coding Tips
• Read the document thoroughly & carefully before coding
o Understand Pintos thread system and synchronization
o Read base code also helps understanding

• Read the design document template first and work on it as
you write code and debug

• Don’t code and design together
o Have a design/solution in your mind first, then starting coding

9/26/25 55

EC 440 Lab 1 Overview

Debugging Suggestion

• Debug with gdb, not with printf
• Get used to debugger
• printf internally uses locks and changes interrupt state

• Can mess up with scheduling
• Look at the test code during the debugging
• When encountering kernel panic or assertion violations
o Figure out the call stack first
o Double check the workflow by GDB

9/26/25 56

EC 440 Lab 1 Overview

Grading

• To receive full credit
o Working, well designed code that completes all tests(70%)
o A complete, well written design document(30%)

• Your coding style and design matters

• All code will be scanned by plagiarism detection software

9/26/25 57

Thanks for attending this session!

