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Administrivia

• Lab 2 deadline:  Friday 11/07 11:59 pm
o Estimated time:  50~60 hours per group

• Submission
o create a “lab2-handin” branch
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Outline

• User Programs In Pintos

• An Overview of Project 2 Requirements

• Getting start

• Tips
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Overview

• Project 2: Userprog
o Allow user programs to run on top of pintos

• Lab 2 requires good understanding of
o How user programs run in general 
o Distinctions between user and kernel virtual memory 
o System call infrastructure 
o File system interface
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User Process & Syscalls
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• Syscalls provide the interface between user process and OS



How to Run A User Program In Linux

• What happens when a user runs (in the shell)
o cp -r ~/foo ~/foo1

• Shell parses user input
o - argc = 4, argv = "cp", "-r", "~/foo", "~/foo1"

• shell calls fork() and execve("cp", argv, env)
• cp uses file system interface to copy files
• cp may print messages to stdout
• cp exits
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 User Programs In Pintos

• Pintos implements a basic program loader
o Parse and load ELF executables 
o Start executables as a user process with one thread

• But this system has problems (fixed by you in this lab)
o User processes crash immediately :(
o System calls only print “system call!”
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How Does Pintos Start A User Program?

• In threads/init.c
o pintos_init()->run_actions() --> run_task(argv)
o run_task() --> process_wait(process_execute(task))
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Important Process Functions In Pintos

• The process_execute() start a process:
o creates thread running start_process() 
o start_process() thread loads executable file 
o sets up user virtual memory (stack, data, code) 
o starts executing user process (jump to the start)

• process_wait() waits for executable to finish

• process_exit() frees resources of program
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Pintos Program Loading Flowchart
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User Program Startup

• After Pintos loads executables, it jumps to user process
static void start_process(void *file_name_) {
    struct intr_frame if_ = /* initialize */;
    asm volatile ("movl %0, %%esp; jmp intr_exit" : : "g" (&if_) : "memory");
    NOT_REACHED (); 
}

•  _start() in lib/user/entry.c is entry point of user programs 
void _start (int argc, char *argv[]) {
    exit (main (argc,argv))
}

• Kernel must pass process start arguments on user stack
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How Does Pintos Handle Syscall?

• Pintos uses int 0x30 for system calls
• Pintos has code for dispatching syscalls from user programs
o i.e. user processes will push 1) syscall number and 2) arguments 

onto the stack and execute int 0x30

• In the kernel, calling syscall_handler() in userprog/syscall.c
static void syscall_handler (struct intr_frame *f) {
    printf ("system call!\n");
    thread_exit ();
}
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Syscall Flowchart (exit)

10/31/25 EC 440 Lab 2 Overview 13

User Program

read()

syscall3()

lib/user/syscall.c

threads/intr-stubs.S

intr30_stub()

intr_entry()

intr_handler()

threads/interrupt.c

syscall_handler()

/userprog/syscall.c

read()

User Space Kernel Space

intr_exit()

Your changes 
will almost all 

be in here



Outline

• User Programs In Pintos

• An Overview of Project 2

• Getting Start 

• Tips

10/31/25 EC 440 Lab 2 Overview 14



Project 2 Requirements

• In Project 2, you need to implement:
o Process exit messages
o Argument Passing
o System calls (Major)
o Safe memory access
o Denying write to in-use executable files (Extra Credit)
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Lab 2 Structure
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Argument Passing

• A user process starts at "int main(int argc, char** argv)"
• In preparation to start a user process, the kernel must 
o parse the command 

“/bin/ls -l foo bar” => “/bin/ls” , “-l” , “foo” , “bar” 

o push function’s arguments onto the stack 
  

• Implement the string parsing however you like in load()
o strtok_r(...) in lib/string.c is helpful
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User vs Kernel Virtual Memory
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Setting Up User Stack

• userprog/process.c
/* Create a minimal stack by mapping a zeroed page at the top of user virtual memory. 
*/
static bool setup_stack (void **esp) {
    uint8_t *kpage;
    bool success = false;

    kpage = palloc_get_page (PAL_USER | PAL_ZERO);
    if (kpage != NULL) {
          success = install_page (((uint8_t *) PHYS_BASE) - PGSIZE, kpage, true);
          if (success) *esp = PHYS_BASE;
          else palloc_free_page (kpage);
    }
    return success;
}
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Argument Passing (Stack)
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• Push the words onto the stack
• Word-align 
• Push a null pointer sentinel 
• Push the address of each word in 

right-to-left order 
• Push argv and argc 
• Push 0 as a fake return address



Design Tips For Argument Passing 

• Implement user stack push function for argument passing
o lib/string.c is helpful

• Distinguish user virtual address and kernel virtual address 
when you are coding

• hex_dump() function is useful for seeing the layout of stack
o void hex_dump (uintptr_t ofs, const void *buf_, size_t size, …)
o Dumps the SIZE bytes in BUF to the console
o ofs is the starting address of buf
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Safe Memory Access

• Kernel may access memory through user-provided pointers
o E.g. read(), write()

• This is dangerous!
o null pointers 
o pointers to unmapped virtual addresses 
o pointers to kernel addresses 

• In lab 2, you need to support reading from and writing to 
user memory for system calls that only access valid address
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Two Approaches To Solving Memory Access

• Approach #1 (simplest): verify every user pointer before 
dereferencing.
o Check in user address space (< PHYS_BASE) 
o Check mapped (using pagedir_get_page() in userprog/pagedir.c)

• Approach #2: Modify page fault handler in exception.c  
o Check in user address space (< PHYS_BASE) 
o Dereference. Invalid pointers will trigger page faults
o More convenient for lab 3
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Two Approaches To Solving Memory Access
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https://stackoverflow.com/questions/14922022/need-to-figure-out-the-meaning-of-following-inline-assembly-code 

https://stackoverflow.com/questions/14922022/need-to-figure-out-the-meaning-of-following-inline-assembly-code


System Calls: how do they work?

• Execute internal interrupt (int instruction) 
o syscall handler (struct intr_frame *f) 

• Stack pointer: f->esp 
• Program pointer: f->eip
• Return value just like functions (f->eax)

• Calling handlers
o Pass args to handler
o Return value to user process
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System Calls: Implementation 

• Read syscall number at stack pointer 

• Dispatch a particular function to handle syscall 

• Read (validate!) arguments (above the stack pointer) 
o Above the stack pointer 
o Validate pointers and buffers! 

• Syscall numbers defined in lib/syscall-nr.h 
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Syscalls To Implement 

• read                                                     halt
• write                                                    exec
• seek                                                     exit
• tell                                                        wait
• close
• create
• remove 
• open 
• filesize
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System Call: File System

• Many syscalls involve file system functionality 
• Simple filesys implement is provided: filesys.h, file.h 
o No need to modify it, but familiarize yourself 

• File system is not thread-safe! 
o Use a coarse-grained lock to protect it 

• Syscalls take file descriptors as args 
o Pintos represents files with struct file* 
o You must design the mapping
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System Calls: Processes(1)

• Generally, these syscalls require the most design and 
implementation time

• pid_t exec(const char *cmd line)
o Similar to UNIX fork() + execve()
o Creates a child process
o Returns after the new process has been created 
o Creation is successful if child has successfully loaded its executable 

and there is a thread ready to run
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System Calls: Processes(2)

• int wait (pid_t pid) 
o parent must block until child process pid exits 
o returns exit status of the child 
o must work if child has ALREADY exited 
o must fail if it has already been called on child before
o you may need to consider many race conditions

• void exit (int status)
o exit with status and free resources
o process termination message
o parent must be able to retrieve status via wait
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System Calls: Security

• How does system recover from null pointer segfault in user 
program?
o kill user process, life goes on

• What about in kernel space?
o Verify all user-passed memory references (pointers, 

buffers, strings)
o Kill user program if passed illegal addresses
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Denying Writes To Executables(Extra Credit)

• Executables are files like any other

• Pintos should not allow code that is currently running to be 
modified
o Use file_deny_write() to prevent writes to an open file 
o Closing a file will re-enable writes 
o Keep executable open as long as the process is running
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Getting Started

• Lab 2 does not depend on Lab 1
o You can either build on your lab1 submission or start from 

beginning 

• Lab 3 and lab 4 are built on top of lab2 
o Any design defects in lab 2 might affect lab3 and lab4

10/31/25 EC 440 Lab 2 Overview 34



Getting Started: File System Setup 

• You need to format a file system to store user programs

• Create a simulated disk called filesys.dsk with a 2MB Pintos 
file system partition, and then copy programs and run them 
o Make disk: pintos-mkdisk filesys.dsk --filesys-size=2 
o Format disk: pintos -- -f -q 
o Copy program: pintos -p ../../examples/echo -a echo -- -q
o Run program: pintos -q run ‘echo x’ 
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Getting Started: Implement this first! (1)

• Argument passing: change *esp = PHYS_BASE; to *esp = 
PHYS_BASE - 12; 
o Allows running programs with no arguments 
o Change again to correct implementation later

• User memory access 
o All system calls need to read user memory 

• System call infrastructure 
o Read system call number from the user stack and dispatch to a 

handler
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Why *esp = PHYS_BASE – 12?
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Getting Started: Implement this first! (2)

• Exit system call 
o Write system call for STDOUT 

• Temporarily change process_wait to an infinite loop so 
pintos doesn’t immediately power off

• Refine your implementation and pass the test
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General Tips 

• Key to implement lab2: understand the user program
o 80x86 Calling Convention
o Program Startup Details
o System Call Details

• Read the design doc together, make sure every member in 
your group understand the user program

• Follow the suggested order of implementation!

• Be brave in modifying original definitions
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Debugging Tips

• If you’re confused about why a test is failing, read the 
source code in tests/userprog

• Read the system call APIs carefully, and make sure you 
validate all user memory addresses
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Common Errors(1)

• My string is modified after being strtok_r()!
o strtok_r() modifies the string, so copy it first
o be careful when allocating memory for copied buffer, allocating a 

large buffer = kernel PANIC!

• hex_dump() prints nothing like it is supposed to be!
o check your user page layout and double check how it would be 

copied to kernel page, also did you specify the right address to 
print
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Common Errors(2)

• Process terminates before it prints anything!
o before you implement sys_wait(), use a while(1) loop to hang main 

thread so you can see output from user programs

• Any program with arguments will fail!
o use *esp = PHYS_BASE - 12; for now
o or you can implement arguments passing first (~1 hour)
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Security Tips

• Cast struct file * to int, and use it as the file descriptor? Use struct 

thread * as pid_t?

o info leak
• write() can be used to dump kernel memory to a file

o Forget to check kernel memory boundary?
o read() can be used to overwrite kernel memory

• User program takes over kernel!
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