
EC440 Pintos Project Lab2
Overview

William Wang (xwill@bu.edu)

10/31/25 EC 440 Lab 2 Overview 1

Administrivia

• Lab 2 deadline: Friday 11/07 11:59 pm
o Estimated time: 50~60 hours per group

• Submission
o create a “lab2-handin” branch

10/31/25 EC 440 Lab 2 Overview 2

Outline

• User Programs In Pintos

• An Overview of Project 2 Requirements

• Getting start

• Tips

10/31/25 EC 440 Lab 2 Overview 3

Overview

• Project 2: Userprog
o Allow user programs to run on top of pintos

• Lab 2 requires good understanding of
o How user programs run in general
o Distinctions between user and kernel virtual memory
o System call infrastructure
o File system interface

10/31/25 EC 440 Lab 2 Overview 4

User Process & Syscalls

10/31/25 EC 440 Lab 2 Overview 5

• Syscalls provide the interface between user process and OS

How to Run A User Program In Linux

• What happens when a user runs (in the shell)
o cp -r ~/foo ~/foo1

• Shell parses user input
o - argc = 4, argv = "cp", "-r", "~/foo", "~/foo1"

• shell calls fork() and execve("cp", argv, env)
• cp uses file system interface to copy files
• cp may print messages to stdout
• cp exits

10/31/25 EC 440 Lab 2 Overview 6

Load user
program

User program
calls syscall

 User Programs In Pintos

• Pintos implements a basic program loader
o Parse and load ELF executables
o Start executables as a user process with one thread

• But this system has problems (fixed by you in this lab)
o User processes crash immediately :(
o System calls only print “system call!”

10/31/25 EC 440 Lab 2 Overview 7

How Does Pintos Start A User Program?

• In threads/init.c
o pintos_init()->run_actions() --> run_task(argv)
o run_task() --> process_wait(process_execute(task))

10/31/25 EC 440 Lab 2 Overview 8

Execute user
program & wait

Important Process Functions In Pintos

• The process_execute() start a process:
o creates thread running start_process()
o start_process() thread loads executable file
o sets up user virtual memory (stack, data, code)
o starts executing user process (jump to the start)

• process_wait() waits for executable to finish

• process_exit() frees resources of program

10/31/25 EC 440 Lab 2 Overview 9

Pintos Program Loading Flowchart

10/31/25 EC 440 Lab 2 Overview 10

process_execute() thread_create() start_process()

load()

file_read()

load_segment()

validate_segment()

install_page()

setup_stack()

install_page()

Start the new
process

(1)

(1)

(3)

(2)
Parse cmd
line args,

pass to load()

Pass the cmd line args
to the new process on

the stack

Load
executable

file

Start the user
program

User Program Startup

• After Pintos loads executables, it jumps to user process
static void start_process(void *file_name_) {
 struct intr_frame if_ = /* initialize */;
 asm volatile ("movl %0, %%esp; jmp intr_exit" : : "g" (&if_) : "memory");
 NOT_REACHED ();
}

• _start() in lib/user/entry.c is entry point of user programs
void _start (int argc, char *argv[]) {
 exit (main (argc,argv))
}

• Kernel must pass process start arguments on user stack
10/31/25 EC 440 Lab 2 Overview 11

How Does Pintos Handle Syscall?

• Pintos uses int 0x30 for system calls
• Pintos has code for dispatching syscalls from user programs
o i.e. user processes will push 1) syscall number and 2) arguments

onto the stack and execute int 0x30

• In the kernel, calling syscall_handler() in userprog/syscall.c
static void syscall_handler (struct intr_frame *f) {
 printf ("system call!\n");
 thread_exit ();
}

10/31/25 EC 440 Lab 2 Overview 12

Syscall Flowchart (exit)

10/31/25 EC 440 Lab 2 Overview 13

User Program

read()

syscall3()

lib/user/syscall.c

threads/intr-stubs.S

intr30_stub()

intr_entry()

intr_handler()

threads/interrupt.c

syscall_handler()

/userprog/syscall.c

read()

User Space Kernel Space

intr_exit()

Your changes
will almost all

be in here

Outline

• User Programs In Pintos

• An Overview of Project 2

• Getting Start

• Tips

10/31/25 EC 440 Lab 2 Overview 14

Project 2 Requirements

• In Project 2, you need to implement:
o Process exit messages
o Argument Passing
o System calls (Major)
o Safe memory access
o Denying write to in-use executable files (Extra Credit)

10/31/25 EC 440 Lab 2 Overview 15

Lab 2 Structure

10/31/25 EC 440 Lab 2 Overview 16

Argument Passing

• A user process starts at "int main(int argc, char** argv)"
• In preparation to start a user process, the kernel must
o parse the command

“/bin/ls -l foo bar” => “/bin/ls” , “-l” , “foo” , “bar”

o push function’s arguments onto the stack

• Implement the string parsing however you like in load()
o strtok_r(...) in lib/string.c is helpful

10/31/25 EC 440 Lab 2 Overview 17

User vs Kernel Virtual Memory

10/31/25 EC 440 Lab 2 Overview 18

mapped one-to-one
to physical memory

per-process, struct
thread contains a
pointer to a process's
page table

Setting Up User Stack

• userprog/process.c
/* Create a minimal stack by mapping a zeroed page at the top of user virtual memory.
*/
static bool setup_stack (void **esp) {
 uint8_t *kpage;
 bool success = false;

 kpage = palloc_get_page (PAL_USER | PAL_ZERO);
 if (kpage != NULL) {
 success = install_page (((uint8_t *) PHYS_BASE) - PGSIZE, kpage, true);
 if (success) *esp = PHYS_BASE;
 else palloc_free_page (kpage);
 }
 return success;
}

10/31/25 EC 440 Lab 2 Overview 19

Map the user virtual
address to the page

Get one page from page pool,
return kernel virtual address

Set the stack point

 You need to place argc and
*argv on the initial stack, since
they are parameters to main()

Argument Passing (Stack)

10/31/25 EC 440 Lab 2 Overview 20

• Push the words onto the stack
• Word-align
• Push a null pointer sentinel
• Push the address of each word in

right-to-left order
• Push argv and argc
• Push 0 as a fake return address

Design Tips For Argument Passing

• Implement user stack push function for argument passing
o lib/string.c is helpful

• Distinguish user virtual address and kernel virtual address
when you are coding

• hex_dump() function is useful for seeing the layout of stack
o void hex_dump (uintptr_t ofs, const void *buf_, size_t size, …)
o Dumps the SIZE bytes in BUF to the console
o ofs is the starting address of buf

10/31/25 EC 440 Lab 2 Overview 21

Safe Memory Access

• Kernel may access memory through user-provided pointers
o E.g. read(), write()

• This is dangerous!
o null pointers
o pointers to unmapped virtual addresses
o pointers to kernel addresses

• In lab 2, you need to support reading from and writing to
user memory for system calls that only access valid address

10/31/25 EC 440 Lab 2 Overview 22

Two Approaches To Solving Memory Access

• Approach #1 (simplest): verify every user pointer before
dereferencing.
o Check in user address space (< PHYS_BASE)
o Check mapped (using pagedir_get_page() in userprog/pagedir.c)

• Approach #2: Modify page fault handler in exception.c
o Check in user address space (< PHYS_BASE)
o Dereference. Invalid pointers will trigger page faults
o More convenient for lab 3

10/31/25 EC 440 Lab 2 Overview 23

Two Approaches To Solving Memory Access

10/31/25 EC 440 Lab 2 Overview 24

https://stackoverflow.com/questions/14922022/need-to-figure-out-the-meaning-of-following-inline-assembly-code

https://stackoverflow.com/questions/14922022/need-to-figure-out-the-meaning-of-following-inline-assembly-code

System Calls: how do they work?

• Execute internal interrupt (int instruction)
o syscall handler (struct intr_frame *f)

• Stack pointer: f->esp
• Program pointer: f->eip
• Return value just like functions (f->eax)

• Calling handlers
o Pass args to handler
o Return value to user process

10/31/25 EC 440 Lab 2 Overview 25

System Calls: Implementation

• Read syscall number at stack pointer

• Dispatch a particular function to handle syscall

• Read (validate!) arguments (above the stack pointer)
o Above the stack pointer
o Validate pointers and buffers!

• Syscall numbers defined in lib/syscall-nr.h

10/31/25 EC 440 Lab 2 Overview 26

Syscalls To Implement

• read halt
• write exec
• seek exit
• tell wait
• close
• create
• remove
• open
• filesize

10/31/25 EC 440 Lab 2 Overview 27

Process syscallFile syscall

System Call: File System

• Many syscalls involve file system functionality
• Simple filesys implement is provided: filesys.h, file.h
o No need to modify it, but familiarize yourself

• File system is not thread-safe!
o Use a coarse-grained lock to protect it

• Syscalls take file descriptors as args
o Pintos represents files with struct file*
o You must design the mapping

10/31/25 EC 440 Lab 2 Overview 28

System Calls: Processes(1)

• Generally, these syscalls require the most design and
implementation time

• pid_t exec(const char *cmd line)
o Similar to UNIX fork() + execve()
o Creates a child process
o Returns after the new process has been created
o Creation is successful if child has successfully loaded its executable

and there is a thread ready to run

10/31/25 EC 440 Lab 2 Overview 29

System Calls: Processes(2)

• int wait (pid_t pid)
o parent must block until child process pid exits
o returns exit status of the child
o must work if child has ALREADY exited
o must fail if it has already been called on child before
o you may need to consider many race conditions

• void exit (int status)
o exit with status and free resources
o process termination message
o parent must be able to retrieve status via wait

10/31/25 EC 440 Lab 2 Overview 30

System Calls: Security

• How does system recover from null pointer segfault in user
program?
o kill user process, life goes on

• What about in kernel space?
o Verify all user-passed memory references (pointers,

buffers, strings)
o Kill user program if passed illegal addresses

10/31/25 EC 440 Lab 2 Overview 31

Denying Writes To Executables(Extra Credit)

• Executables are files like any other

• Pintos should not allow code that is currently running to be
modified
o Use file_deny_write() to prevent writes to an open file
o Closing a file will re-enable writes
o Keep executable open as long as the process is running

10/31/25 EC 440 Lab 2 Overview 32

Outline

• User Programs In Pintos

• An Overview of Project 2

• Getting Start

• Tips

10/31/25 EC 440 Lab 2 Overview 33

Getting Started

• Lab 2 does not depend on Lab 1
o You can either build on your lab1 submission or start from

beginning

• Lab 3 and lab 4 are built on top of lab2
o Any design defects in lab 2 might affect lab3 and lab4

10/31/25 EC 440 Lab 2 Overview 34

Getting Started: File System Setup

• You need to format a file system to store user programs

• Create a simulated disk called filesys.dsk with a 2MB Pintos
file system partition, and then copy programs and run them
o Make disk: pintos-mkdisk filesys.dsk --filesys-size=2
o Format disk: pintos -- -f -q
o Copy program: pintos -p ../../examples/echo -a echo -- -q
o Run program: pintos -q run ‘echo x’

10/31/25 EC 440 Lab 2 Overview 35

Getting Started: Implement this first! (1)

• Argument passing: change *esp = PHYS_BASE; to *esp =
PHYS_BASE - 12;
o Allows running programs with no arguments
o Change again to correct implementation later

• User memory access
o All system calls need to read user memory

• System call infrastructure
o Read system call number from the user stack and dispatch to a

handler

10/31/25 EC 440 Lab 2 Overview 36

Why *esp = PHYS_BASE – 12?

10/31/25 EC 440 Lab 2 Overview 37

Getting Started: Implement this first! (2)

• Exit system call
o Write system call for STDOUT

• Temporarily change process_wait to an infinite loop so
pintos doesn’t immediately power off

• Refine your implementation and pass the test

10/31/25 EC 440 Lab 2 Overview 38

Outline

• User Programs In Pintos

• An Overview of Project 2

• Getting Start

• Tips

10/31/25 EC 440 Lab 2 Overview 39

General Tips

• Key to implement lab2: understand the user program
o 80x86 Calling Convention
o Program Startup Details
o System Call Details

• Read the design doc together, make sure every member in
your group understand the user program

• Follow the suggested order of implementation!

• Be brave in modifying original definitions
10/31/25 EC 440 Lab 2 Overview 40

Debugging Tips

• If you’re confused about why a test is failing, read the
source code in tests/userprog

• Read the system call APIs carefully, and make sure you
validate all user memory addresses

10/31/25 EC 440 Lab 2 Overview 41

Common Errors(1)

• My string is modified after being strtok_r()!
o strtok_r() modifies the string, so copy it first
o be careful when allocating memory for copied buffer, allocating a

large buffer = kernel PANIC!

• hex_dump() prints nothing like it is supposed to be!
o check your user page layout and double check how it would be

copied to kernel page, also did you specify the right address to
print

10/31/25 EC 440 Lab 2 Overview 42

Common Errors(2)

• Process terminates before it prints anything!
o before you implement sys_wait(), use a while(1) loop to hang main

thread so you can see output from user programs

• Any program with arguments will fail!
o use *esp = PHYS_BASE - 12; for now
o or you can implement arguments passing first (~1 hour)

10/31/25 EC 440 Lab 2 Overview 43

Security Tips

• Cast struct file * to int, and use it as the file descriptor? Use struct

thread * as pid_t?

o info leak
• write() can be used to dump kernel memory to a file

o Forget to check kernel memory boundary?
o read() can be used to overwrite kernel memory

• User program takes over kernel!

10/31/25 EC 440 Lab 2 Overview 44

