EC440 Pintos Project Lab2
Overview

William Wang (xwill@bu.edu)

 Lab 2 deadline: Friday 11/07 11:59 pm
o Estimated time: 50~60 hours per group

e Submission
o create a “lab2-handin” branch

10/31/25 EC 440 Lab 2 Overview 2

‘User Programs In Pintos

* An Overview of Project 2 Requirements
* Getting start

* Tips

10/31/25 EC 440 Lab 2 Overview 3

Overview

* Project 2: Userprog
o Allow user programs to run on top of pintos

* Lab 2 requires good understanding of
o How user programs run in general
o Distinctions between user and kernel virtual memory
o System call infrastructure
o File system interface

10/31/25 EC 440 Lab 2 Overview 4

User Process & Syscalls

e Syscalls provide the interface between user process and OS

| gCC macs
USER
KERNEL

* scheduler

10/31/25 EC 440 Lab 2 Overview 5

How to Run A User Program In Linux

* What happens when a user runs (in the shell)
o cp -r ~/foo ~/fool
Shell parses user input

Load user

o -argc=4,argv="cp","-r" ""’/foo" "~/fool"
program

shell calls fork() and execve("cp", argv, env)
cp uses file system interface to copy files

User program
calls syscall

cp may print messages to stdout

10/31/25 EC 440 Lab 2 Overview 6

User Programs In Pintos

* Pintos implements a basic program loader
o Parse and load ELF executables
o Start executables as a user process with one thread

e But this system has problems (fixed by you in this lab)
o User processes crash immediately :(
o System calls only print “system call!”

10/31/25 EC 440 Lab 2 Overview 7

How Does Pintos Start A User Program?

* In threads/init.c
o pintos_init()->run_actions() --> run_task(argv)
o run_task() --> process_ wait(process execute(task))

/* Runs the task specified in ARGV[1]. */

static void
run_task (char **argv)

{

const char *task = argv[1];

Execute user

#1fdef USERPROG | .
process wait (process execute (task)); program & Wa|t
#else

#endif
printf ("Execution of '%s' complete.\n", task);

}

10/31/25 EC 440 Lab 2 Overview

Important Process Functions In Pintos

* The process_execute() start a process:
o creates thread running start_process()
o start_process() thread loads executable file
o sets up user virtual memory (stack, data, code)
o starts executing user process (jump to the start)

* process_wait() waits for executable to finish

e process_exit() frees resources of program

10/31/25 EC 440 Lab 2 Overview 9

Pintos Program Loading Flowchart
(3)

process_execute() thread_create() start_process|() I

1
Parse cmd ‘ load() I) Start the new
Iine argsl 4 (2) process

pass to load()
Start the user

‘ program

Load
executable
file

load_segment() install_page()
Pass the cmd line args

to the new process on
the stack

validate_segment()

install_page()

10/31/25 EC 440 Lab 2 Overview 10

User Program Startup

* After Pintos loads executables, it jumps to user process

static void start process(void *file name) {
struct intr_frame if_ = /* initialize */;
asm volatile ("movl %0, %%esp; jmp intr_exit" : : "g" (&if_) : "memory");
NOT_REACHED ();

}

e start() in lib/user/entry.c is entry point of user programs

void _start (int argc, char *argv[]) {
exit (main (argc,argv))

}

 Kernel must pass process start arguments on user stack

10/31/25 EC 440 Lab 2 Overview 11

How Does Pintos Handle Syscall?

* Pintos uses int 0x30 for system calls

* Pintos has code for dispatching syscalls from user programs
o i.e. user processes will push 1) syscall number and 2) arguments
onto the stack and execute int 0x30

* |In the kernel, calling syscall_handler() in userprog/syscall.c

static void syscall handler (struct intr_frame *f) {
printf ("system calll\n");
thread _exit ();

10/31/25 EC 440 Lab 2 Overview 12

Syscall Flowchart (exit)

User Space

userprog/syscall.c
User Program Your changes / prog/sy

will almost all syscall_handler()
be in here

...

intr_handler()

threads/ifserrupt.c

syscall3()

lib/user/syscall.c intr_e%

intr_exit()

...

_ intr30_stub() _
10/31/25 EC 440 Lab 2 Overview threads/intr-stubs.S = 43

* User Programs In Pintos
‘An Overview of Project 2
* Getting Start

* Tips

10/31/25 EC 440 Lab 2 Overview 14

Project 2 Requirements

* In Project 2, you need to implement:
o Process exit messages

Argument Passing

System calls (Major)

Safe memory access

O
O
O
o Denying write to in-use executable files (Extra Credit)

10/31/25 EC 440 Lab 2 Overview 15

Lab 2 Structure

P2-4:
Robustness

Stress Tests

Usermode
Test Cases

P2-4:
Basic Filesystem

P2-4: System Call Functionality

Priority Scheduling

MLFQS Scheduling

P1: Kernel-mode Test Cases

P1: Alarm
Clock
P1: MLFQS

P1: Priority Scheduler

P1: Priority
Inheritance

Threading
Simple Scheduler

Pintos Kernel

Boot Support

Priority Scheduling

MLFQS Scheduling

P1: Kernel-mode Test Cases

P2: System Call Layer: Copy-in/out, FD Management

P2: Process Management

P1: Alarm
Clock

P1: MLFQS

P1: Priority
Inheritance

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCI, IDE

P1: Priority Scheduler

E Support Code

10/31/25

Threading
Simple Scheduler

Pintos Kernel

Boot Support

Basic Filesystem

Device Support
Keyboard, VGA, USB, Serial Port, Timer, PCl, IDE

3/7/2009

Support Code

EC 440 Lab 2 Overview

Students Create Public Tests Post Project 2

16

Argument Passing

* A user process starts at "int main(int argc, char** argv)"
* In preparation to start a user process, the kernel must

o parse the command
“/bin/Is -l foo bar” => “/bin/Is”, “-I”, “foo” , “bar”
o push function’s arguments onto the stack

* Implement the string parsing however you like in load()
o strtok_r(...) in lib/string.c is helpful

10/31/25 EC 440 Lab 2 Overview 17

User vs Kernel Virtual Memory

10/31/25

Kernel
virtual memory

User Stack

l

user virtual memory

!

4 GB

\ mapped one-to-one

to physical memory
PHYS_BASE

\ per-process, struct

User Data thread contains a
Init Data pointer to a process's
User code page table
s 0
EC 440 Lab 2 Overview 18

Setting Up User Stack

e userprog/process.c

/* Create a minimal stack by mapping a zeroed page at the top of user virtual memory.
*/

static bool setup_stack (void **esp) {

uint8_t *kpage; Get one page from page pool,
bool success = false; ! return kernel virtual address
Map the user virtual

[kpage = palloc_get page (PAL_USER | PAL_ZERO);
if (kpage != NULL) { f address to the page

success = install page uint8 t *) PHYS BASE) - PGSIZE, kpage, true);]
|i1c (success) *esp = PHYS_BASE;l\. .
else palloc_free_page (kpage); Set the stack point

} You need to place argc and
return success;

*argv on the initial stack, since
they are parameters to main()

10/31/25 EC 440 Lab 2 Overview 19

Argument Passing (Stack)

Address Name Data Type

 Push the words onto the stack OxbFFFEFC argv[3][...] "bar\@" char[4]

. Oxbffffff8 argv[2][...] "foo\0" char[4]

° WOrd'ahgn Oxbffffff5 argv[1][...] "-1\0" char[3]

. . Oxbfffffed argv[0][...] "/bin/1s\0" char[8]

° PUSh d nuII pomter Sentmel Oxbfffffecword-align O uints t

 Push the address of each word in ~ @®fffffesarevial @ et

Oxbfffffed argv[3] Oxbffffffc char *

right-to-left order Oxbfffffed argv[2] OXbffffff8 char *

Oxbfffffdc argv[1] Oxbffffff5 char *

® Push argv and argC Oxbfffffd8 argv[e] Oxbfffffed char *

Oxbfffffd4 argv @xbfffffd8 char **

 Push O as a fake return address OxbFFFFdO arge 4 int

@xbfffffccreturn addressO void (*) ()

10/31/25 EC 440 Lab 2 Overview 20

Design Tips For Argument Passing

* Implement user stack push function for argument passing
o lib/string.c is helpful

* Distinguish user virtual address and kernel virtual address
when you are coding

 hex_dump() function is useful for seeing the layout of stack
o void hex_dump (uintptr t ofs, const void *buf _, size t size, ...)
o Dumps the SIZE bytes in BUF to the console

O 109;5; is the starting address of buf »

Safe Memory Access

* Kernel may access memory through user-provided pointers
o E.g.read(), write()

* This is dangerous!
o null pointers
o pointers to unmapped virtual addresses
o pointers to kernel addresses

°In lab 2, you need to support reading from and writing to
user memory for system calls that only access valid address

10/31/25 EC 440 Lab 2 Overview 22

Two Approaches To Solving Memory Access

 Approach #1 (simplest): verify every user pointer before

dereferencing.
o Check in user address space (< PHYS BASE)
o Check mapped (using pagedir_get page() in userprog/pagedir.c)

 Approach #2: Modify page fault handler in exception.c
o Check in user address space (< PHYS BASE)
o Dereference. Invalid pointers will trigger page faults
o More convenient for lab 3

10/31/25 EC 440 Lab 2 Overview 23

Two Approaches To Solving Memory Access

/* Reads a byte at user virtual address UADDR.
UADDR must be below PHYS_BASE.
Returns the byte value if successful, -1 if a segfault
occurred. */

static int
get_user (const uint8_t xuaddr) /* Writes BYTE to user address UDST.
{ UDST must be below PHYS_BASE.
int result; Returns true if successful, false if a segfault occurred. x/
asm ("movl $1f, %0; movzbl %1, %0; 1:" static bool
: "=8&a" (result) : "m" (xuaddr)); put_user (uint8_t xudst, uint8_t byte)
return result; {
} int error_code;

asm ("movl $1f, %0; movb %b2, %1; 1:"
: "=&a" (error_code), "=m" (xudst) : "q" (byte));
return error_code != -1;

b

https://stackoverflow.com/questions/14922022/need-to-figure-out-the-meaning-of-following-inline-assembly-code

10/31/25 EC 440 Lab 2 Overview 24

https://stackoverflow.com/questions/14922022/need-to-figure-out-the-meaning-of-following-inline-assembly-code

System Calls: how do they work?

* Execute internal interrupt (int instruction)
o syscall handler (struct intr_frame *f)

e Stack pointer: f->esp
* Program pointer: f->eip
* Return value just like functions (f->eax)

e Calling handlers
o Pass args to handler
o Return value to user process

10/31/25 EC 440 Lab 2 Overview 25

System Calls: Implementation

* Read syscall number at stack pointer
* Dispatch a particular function to handle syscall

* Read (validate!) arguments (above the stack pointer)
o Above the stack pointer
o Validate pointers and buffers!

e Syscall numbers defined in lib/syscall-nr.h

10/31/25 EC 440 Lab 2 Overview 26

Syscalls To Implement

read File syscall halt Process syscall
write y ‘- exec | &~

seek exit

tell wait

close

create
remove
open
filesize

10/31/25 EC 440 Lab 2 Overview 27

System Call: File System

* Many syscalls involve file system functionality
* Simple filesys implement is provided: filesys.h, file.h
o No need to modify it, but familiarize yourself

* File system is not thread-safe!
o Use a coarse-grained lock to protect it

e Syscalls take file descriptors as args
o Pintos represents files with struct file*
o You must design the mapping

10/31/25 EC 440 Lab 2 Overview 28

System Calls: Processes(1)

* Generally, these syscalls require the most design and
implementation time

* pid_t exec(const char *cmd line)
o Similar to UNIX fork() + execve()
o Creates a child process
o Returns after the new process has been created
o Creation is successful if child has successfully loaded its executable
and there is a thread ready to run

10/31/25 EC 440 Lab 2 Overview 29

System Calls: Processes(2)

* int wait (pid_t pid)

o parent must block until child process pid exits
returns exit status of the child
must work if child has ALREADY exited
must fail if it has already been called on child before
O Yyou may need to consider many race conditions

* void exit (int status)
o exit with status and free resources
O process termination message
o parent must be able to retrieve status via wait

10/31/25 EC 440 Lab 2 Overview 30

O O O

System Calls: Security

* How does system recover from null pointer segfault in user
program?
o kill user process, life goes on

e What about in kernel space?
o Verify all user-passed memory references (pointers,
buffers, strings)
o Kill user program if passed illegal addresses

10/31/25 EC 440 Lab 2 Overview 31

Denying Writes To Executables(Extra Credit)

* Executables are files like any other

* Pintos should not allow code that is currently running to be

modified

o Use file_deny_ write() to prevent writes to an open file
o Closing a file will re-enable writes

o Keep executable open as long as the process is running

10/31/25 EC 440 Lab 2 Overview 32

* User Programs In Pintos
 An Overview of Project 2

-Getting Start

* Tips

10/31/25 EC 440 Lab 2 Overview 33

Getting Started

* Lab 2 does not depend on Lab 1
o You can either build on your lab1 submission or start from
beginning

* Lab 3 and lab 4 are built on top of lab2
o Any design defects in lab 2 might affect lab3 and lab4

10/31/25 EC 440 Lab 2 Overview 34

Getting Started: File System Setup

* You need to format a file system to store user programs

* Create a simulated disk called filesys.dsk with a 2MB Pintos

file system partition, and then copy programs and run them
o Make disk: pintos-mkdisk filesys.dsk --filesys-size=2

o Format disk: pintos -- -f -g

o Copy program: pintos -p ../../examples/echo -a echo -- -q

o Run program: pintos -q run ‘echo x’

10/31/25 EC 440 Lab 2 Overview 35

Getting Started: Implement this first! (1)

* Argument passing: change *esp = PHYS_BASE; to *esp =
PHYS BASE - 12;

o Allows running programs with no arguments
o Change again to correct implementation later

e User memory access
o All system calls need to read user memory

e System call infrastructure
o Read system call number from the user stack and dispatch to a

handler

10/31/25 EC 440 Lab 2 Overview 36

Why *esp = PHYS BASE — 127

PHYS BASE
argv (0)
PHYS BASE - 4 |
argc (0)
PHYS BASE - 8 |
return addr

PHYS BASE - 12

10/31/25 EC 440 Lab 2 Overview 37

Getting Started: Implement this first! (2)

* Exit system call
o Write system call for STDOUT

* Temporarily change process_wait to an infinite loop so
pintos doesn’t immediately power off

* Refine your implementation and pass the test

10/31/25 EC 440 Lab 2 Overview

38

* User Programs In Pintos
 An Overview of Project 2

* Getting Start

‘Tips

10/31/25 EC 440 Lab 2 Overview 39

General Tips

* Key to implement lab2: understand the user program
o 80x86 Calling Convention
o Program Startup Details
o System Call Details

* Read the design doc together, make sure every member in
your group understand the user program

* Follow the suggested order of implementation!

* Be brave in modifying original definitions

10/31/25 EC 440 Lab 2 Overview 40

Debugging Tips

* If you’re confused about why a test is failing, read the
source code in tests/userprog

* Read the system call APIs carefully, and make sure you
validate all user memory addresses

10/31/25 EC 440 Lab 2 Overview 41

Common Errors(1)

* My string is modified after being strtok _r()!

o strtok r() modifies the string, so copy it first
o be careful when allocating memory for copied buffer, allocating a
large buffer = kernel PANIC!

* hex_dump() prints nothing like it is supposed to be!

o check your user page layout and double check how it would be
copied to kernel page, also did you specify the right address to
print

10/31/25 EC 440 Lab 2 Overview 42

Common Errors(2)

* Process terminates before it prints anything!

o before you implement sys_wait(), use a while(1) loop to hang main
thread so you can see output from user programs

* Any program with arguments will fail!

o use *esp = PHYS BASE - 12; for now
o oryou can implement arguments passing first (~1 hour)

10/31/25 EC 440 Lab 2 Overview 43

Security Tips

e Cast struct file * to int, and use it as the file descriptor? Use struct
thread * as pid_t?
o info leak

e write() can be used to dump kernel memory to a file

o Forget to check kernel memory boundary?
o read() can be used to overwrite kernel memory
* User program takes over kernel!

10/31/25 EC 440 Lab 2 Overview 44

