
EC440, Fall 2025

Homework #2
Yigong Hu, yigongh@bu.edu

Problem 1: [Ryan]

Microsoft .NET provides a synchronization primitive called a CountdownEvent. Programs
use CountdownEvent to synchronize on the completion of many threads (similar to Count-
DownLatch in Java). A CountdownEvent is initialized with a count, and a CountdownEvent
can be in two states, nonsignalled and signalled. Threads use a CountdownEvent in the
nonsignalled state to Wait (block) until the internal count reaches zero. When the internal
count of a CountdownEvent reaches zero, the CountdownEvent transitions to the signalled
state and wakes up (unblocks) all waiting threads.
Once a CountdownEvent has transitioned from nonsignalled to signalled, the Countdown-
Event remains in the signalled state. In the nonsignalled state, at any time a thread may call
the Decrement operation to decrease the count and Increment to increase the count. In the
signalled state, Wait, Decrement, and Increment have no effect and return immediately.

(a) Use pseudo-code to implement a thread-safe CountdownEvent using locks and condition
variables by implementing the following methods:

class CountdownEvent {

... private variables ...

CountdownEvent (int count) { ... }

void Increment () { ... }

void Decrement () { ... }

void Wait () { ... }

}

Notes:

• The CountdownEvent constructor takes an integer count as input and initializes the
CountdownEvent counter with count. Positive values of count cause the Countdown-
Event to be constructed in the nonsignalled state. Other values of count will construct
it in the signalled stat.

• Increment increments the internal counter.

• Decrement decrements the internal counter. If the counter reaches zero, the Count-
downEvent transitions to the signalled state and unblocks any waiting threads.

• Wait blocks the calling thread if the CountdownEvent is in the nonsignalled state, and
otherwise returns.

• Each of these methods is relatively short.

(b) Semaphores also increment and decrement. How do the semantics of a CountdownEvent
differ from a Semaphore?

1



Problem 2: [Ryan]

Does a multi-threading solution always improve performance? Please ex- plain your answer
and give reasons.

(a) Implement a Barrier using a CountdownEvent in the previous exercise

(b) Write a monitor that implements Barrier using Mesa semantics.

monitor Barrier {

...

}

(c) Implement Barrier using an explicit lock and condition variable.

class Barrier {

... private variables ...

void Done (int n) {

...

}

...

}

Problem 3: [Ryan]

Consider a problem in which there is a producer p and two consumers c1 and c2. The
producer produces pairs of values < a, b >. The producer does not have to wait in Put for
a consumer, and the monitor will have to accumulate the values in auxiliary data structures
to ensure nothing gets lost (you can assume the use of lists or arrays). Assume that Put can
accumulate at most k pairs of values. Consumer c1 consumes the a values of these pairs and
c2 consumes the b values of these pairs. A consumer consumes only one value per call.

Hint: This problem is very similar to the producer/consumer problem-it just so happens
that objects are produced in pairs, and each part of a pair is consumed individually

Write a Mesa-style monitor for this problem. It should have three entry methods: void
Put(int a, b) that p would use to produce values, int GetA(void) that c1 would use to
consume a values, and int GetB(void) that c2 would use to consume b values. For
synchronization, you should only use condition variables.
An example sequence of calls could be:

Put (10 ,20)

GetA() -> returns 10

Put (300 ,400)

GetA() -> returns 300

GetB() -> returns 20

GetA() blocks the caller

2



Problem 4: [Ryan]

Demonstrate that monitors and semaphores are equivalent so they can be used to implement
the same types of synchronization problems.

Problem 5: [Anderson]

You have been hired by a company to do climate modeling of oceans. The inner loop of the
program matches atoms of different types as they form molecules. In an excessive reliance
on threads, each atom is represented by a thread.

(a) Your task is to write code to form water out of two hydrogen threads and one oxygen
thread (H2O). You are to write the two procedures: HArrives() and OArrives(). A water
molecule forms when two H threads are present and one O thread; otherwise, the atoms must
wait. Once all three are present, one of the threads calls MakeWater(), and only then, all
three depart.

(b) The company wants to extend its work to handle cloud modelling. Your task is to write
code to form ozone out of three oxygen threads. Each of the threads calls OArrives(), and
when three are present, one calls MakeOzone(), and only then, all three depart.

(c) Extending the product line into beer production, your task is to write code to form alcohol
(C2H6O) out of two carbon atoms, six hydrogens, and one oxygen. You must use locks and
Mesa-style condition variables to implement your solutions. Obviously, an atom that arrives
after the molecule is made must wait for a different group of atoms to be present. There
should be no busy-waiting and you should correctly handle spurious wakeups. There must
also be no useless waiting: atoms should not wait if there is a sufficient number of each type.

Problem 6: [Silberschatz]

Windows Vista provides a new lightweight synchronization tool called a slim reader–writer
(SRW) lock. Whereas most implementations of reader–writer locks favor either readers or
writers, or perhaps order waiting threads using a FIFO policy, slim reader–writer locks favor
neither readers nor writers and do not order waiting threads in a FIFO queue. Explain the
benefits of providing such a synchronization tool.

Problem 7: [Silberschatz]

Consider the traffic deadlock depicted in the following figure.

3



a) Show that the four necessary conditions for deadlock indeed hold in this example.

b) State a simple rule that will avoid deadlocks in this system

Problem 8: [Silberschatz]

A single-lane bridge connects the two Vermont villages of North Tunbridge and South Tun-
bridge. Farmers in the two villages use this bridge to deliver their produce to the neighboring
town. The bridge can become deadlocked if a northbound and a southbound farmer get on the
bridge at the same time. (Vermont farmers are stubborn and are unable to back up.) Using
semaphores and/or mutex locks, design an algorithm in pseudocode that prevents deadlock.

(a) Using exactly one semaphore, design an algorithm that prevents deadlock. Initially,
do not be concerned about starvation (the situation in which northbound farmers prevent
southbound farmers from using the bridge, or vice versa).

(b) Modify your solution so that it is starvation-free.

Problem 9: [Silberschatz]

Consider the variation of the Dining Philosophers problem (See Section 31.6 of the OSTEP
textbook for a description of the problem), where all unused forks are placed in the center of
the table and any philosopher can eat with any two forks. Assume that requests for forks are
made one at a time. Describe a simple rule for determining whether a particular request can
be satisfied without causing deadlock given the current allocation of forks to philosophers.

4



Problem 10: [Ryan]

Annabelle, Bertrand, Chloe and Dag are working on their term papers in CS 318, which is
a 10,000 word essay on My All-Time Favorite Race Conditions. To help them work on their
papers, they have one dictionary, two copies of Roget’s Thesaurus, and two coffee cups.
Annabelle needs to use the dictionary and a thesaurus to write her paper;

• Bertrand needs a thesaurus and a coffee cup to write his paper;

• Chloe needs a dictionary and a thesaurus to write her paper;

• Dag needs two coffee cups to write his paper (he likes to have a cup of regular and a
cup of decaf at the same time to keep himself in balance).

Consider the following state:

• Annabelle has a thesaurus and need the dictionary.

• Bertrand has a thesaurus and a coffee cup.

• Chloe has the dictionary and needs a thesaurus.

• Dag has a coffee cup and needs another coffee cup.

- Is the system deadlocked in this state? Explain using a resource allocation graph.
- Is this state reachable if the four people allocated and released their resources using the
Banker’s algorithm? Explain.

5


