
Midterm Review

Fall 2025

CE 440 Introduction to Operating System

Prof. Yigong Hu

Slides courtesy of Manuel Egele, Ryan Huang and Baris Kasikci

Midterm

2

• October 22th Tuesday 4:30-6:00 pm at classroom

• Covers material in lecture1-9

• Based upon lecture material, homework, and project
o Make sure you do the homework to practice

• One 8.5’’x11” double-sided sheet of notes

• Obligatory: do not cheat
o Everyone must put all of their belongings in a bag and place the bag at the front of the

room.
o Do not copy from your neighbors
o No one involved will be happy, particularly the teaching staff

Exam Format

3

• 7 questions (75 points + 5 bonus point)
o 1 true/false question
o 4 short answer questions
o 1 coding question
o 1 lab related question

Lecture Overview

4

Architecture support

Process + Thread

Scheduling

Synchronization

Deadlock

Arch Support for OSes

5

Types of architecture support
• Manipulating privileged machine state
• Generating and handling events

Privileged Instructions

6

What are privileged instructions?
• Who gets to execute them?
• How does the CPU know whether they can be executed?
• Difference between user and kernel mode

Why do they need to be privileged?

What do they manipulate?
• Protected control registers
• Memory management
• I/O devices

Events

7

Events

What are faults, and how are they handled?

What are system calls, and how are they handled?

What are interrupts, and how are they handled?
• How do I/O devices use interrupts?

What is the difference between exceptions and interrupts?

Unexpected Deliberate

Exceptions (sync) fault syscall trap

Interrupts (async) interrupt Software interrupt

Lecture Overview

8

Architecture support

Process + Thread

Scheduling

Synchronization

Deadlock

Processes

9

What is a process?

What resource does it virtualize?

What is the difference between a process and a program?

What is contained in a process?

Processes Data Structures

10

Process Control Blocks (PCBs)
• What information does it contain?
• How is it used in a context switch?

State queues
• What are process states?
• What is the process state graph?
• When does a process change state?
• How does the OS use queues to keep track of processes?

Processes Manipulation

11

What does CreateProcess on NT do?

What does fork()on Unix do?
• What does it mean for it to “return twice”?

What does exec() on Unix do?
• How is it different from fork?

How are fork and exec used to implement shells?

Why fork()?

Threads

12

What is a thread?
• What is the difference between a thread and a process?
• How are they related?

Why are threads useful?

What is the difference between user-level and kernel-level
threads?

• What are the advantages/disadvantages of one over another?

Threads Implementation

13

How are threads managed by the run-time system?
• Thread control blocks, thread queues
• How is this different from process management?

What operations do threads support?
• create, yield, sleep, etc.
• What does thread yield do?

What is a context switch?

What is the difference between non-preemptive scheduling and
preemptive thread scheduling?

• Voluntary and involuntary context switches

Lecture Overview

14

Architecture support

Process + Thread

Scheduling

Synchronization

Deadlock

Scheduling

15

What kinds of scheduling is there?
• Long-term scheduling
• Short-term scheduling

Components
• Scheduler (dispatcher)

When does scheduling happen?
• Job changes state (e.g., waiting to running)
• Interrupt, exception
• Job creation, termination

Scheduling Goals

16

Goals
• Maximize CPU utilization
• Maximize job throughput
• Minimize turnaround time
• Minimize waiting time
• Minimize response time

What is the goal of a batch system?

What is the goal of an interactive system?

Starvation

17

Starvation
• Indefinite denial of a resource (CPU, lock)

Causes
• Side effect of scheduling
• Side effect of synchronization

Operating systems try to prevent starvation

Scheduling Algorithm

18

What are the properties, advantages and disadvantages of the
following scheduling algorithms?

• First Come First Serve (FCFS)/First In First Out (FIFO)
• Shortest Job First (SJF)

Preemptive: Shortest-Remaining-Time-First (SRTF)
• Priority
• Round Robin
• Multilevel feedback queues

What scheduling algorithm does Unix use? Why?

Lecture Overview

19

Architecture support

Process + Thread

Scheduling

Synchronization

Deadlock

Synchronization

20

Why do we need synchronization?
• Coordinate access to shared data structures
• Coordinate thread/process execution

What can happen to shared data structures if synchronization is not
used?

• Race condition
• Corruption
• Bank account example

When are resources shared?
• Global variables, static objects
• Heap objects

Concurrent Programs

21

Monitor Bounded_buffer {
 Resource buffer[N];
 // Variables for indexing buffer
 // monitor invariant involves these vars
 Condition not_full; // space in buffer
 Condition not_empty; // value in buffer

 void put_resource (Resource R) {
 while (buffer array is full)
 wait(not_full);
 Add R to buffer array;
 signal(not_empty);
 }

Resource get_resource() {
 while (buffer array is empty)
 wait(not_empty);
 Get resource R from buffer array;
 signal(not_full);
 return R;
 }

} // end monitor

Our goal is to write concurrent programs…

Concurrent Programs

22

Resource get_resource() {
 while (buffer array is empty)
 wait(not_empty);
 Get resource R from buffer array;
 signal(not_full);
 return R;
 }

} // end monitor

Need mechanisms for
coordinating threads

Need mutual

exclusion for critical

sections

Mutual Exclusion

23

lock.acquire();

…

lock.release();

Interrupts enabled, other
threads can run (just not in
this critical section)

Need mutual

exclusion for critical

sections

Mutual Exclusion

24

lock.acquire();

…

lock.release();

Void acquire () {
// Disable interrupts
// Enable interrupts

}

Also need mutual exclusion; disable
interrupts, or use spinlocks with special

hardware instructions

Mutual Exclusion

25

What is mutual exclusion?

What is a critical section?
• What guarantees do critical sections provide?
• What are the requirements of critical sections?

o Mutual exclusion (safety)
o Progress (liveness)
o Bounded waiting (no starvation: liveness)
o Performance

How does mutual exclusion relate to critical sections?

What are the mechanisms for building critical sections?
o Locks, semaphores, monitors, condition variables

Locks

26

What does Acquire do?

What does Release do?

What does it mean for Acquire/Release to be atomic?

How can locks be implemented?
• Spinlocks
• Disable/enable interrupts
• Blocking

How does test-and-set work?
• What kind of lock does it implement?

What are the limitations of using spinlocks, interrupts?
• Inefficient, interrupts turned off too long

Semaphores

27

What is a semaphore?
• What does Wait/P/Decrement do?
• What does Signal/V/Increment do?
• How does a semaphore differ from a lock?
• What is the difference between a binary semaphore and a counting semaphore?

When do threads block on semaphores?

When are they woken up again?

Using semaphores to solve synchronization problems
• Readers/Writers problem
• Bounded Buffers problem

Monitors

28

What is a monitor?
• Shared data
• Procedures
• Synchronization

In what way does a monitor provide mutual exclusion?
• To what extent is it provided?

How does a monitor differ from a semaphore?

How does a monitor differ from a lock?

What kind of support do monitors require?
• Language, run-time support

Condition Variables

29

What is a condition variable used for?
• Coordinating the execution of threads
• Not mutual exclusion

Operations
• What are the semantics of Wait?
• What are the semantics of Signal?
• What are the semantics of Broadcast?

How are condition variables different from semaphores?

Implementing Monitors

30

What does the implementation of a monitor look like?
• Shared data
• Procedures
• A lock for mutual exclusion to procedures (w/ a queue)
• Queues for the condition variables

What is the difference between Hoare and Mesa monitors?
• Semantics of signal (whether the woken up waiter gets to run

immediately or not)
• What are their tradeoffs?
• What does Java provide?

Locks and Condition Variables

31

Condition variables are also used without monitors in
conjunction with locks

A monitor ≈ a module whose state includes a C/V and a lock

Why must cond_wait both release mutex_t & sleep?

Synchronization

32

Use synchronization primitives (locks, semaphores, monitor,
condition variables, etc.) to solve synchronization problems

Lecture Overview

33

Architecture support

Process + Thread

Scheduling

Synchronization

Deadlock

Deadlock

34

Deadlock happens when processes are waiting on each other
and cannot make progress

What are the conditions for deadlock?
• Mutual exclusion
• Hold and wait
• No preemption
• Circular wait

How to visualize, represent abstractly?
• Resource allocation graph (RAG)
• Waits for graph (WFG)

Deadlock Approaches

35

Dealing with deadlock
• Ignore it
• Prevent it (prevent one of the four conditions)
• Avoid it (have tight control over resource allocation)
• Detect and recover from it

What is the Banker’s algorithm?
• Which of the four approaches above does it implement?

Race Conditions

36

What is the range of possible values for x? Why?

int x = 0;
int i, j;
void AddToX() {
 for (i = 0; i < 100; i++) x++;
}

void SubFromX() {
 for (j = 0; j < 100; j++) x--;
}

	Slide 1: Midterm Review Fall 2025
	Slide 2: Midterm
	Slide 3: Exam Format
	Slide 4: Lecture Overview
	Slide 5: Arch Support for OSes
	Slide 6: Privileged Instructions
	Slide 7: Events
	Slide 8: Lecture Overview
	Slide 9: Processes
	Slide 10: Processes Data Structures
	Slide 11: Processes Manipulation
	Slide 12: Threads
	Slide 13: Threads Implementation
	Slide 14: Lecture Overview
	Slide 15: Scheduling
	Slide 16: Scheduling Goals
	Slide 17: Starvation
	Slide 18: Scheduling Algorithm
	Slide 19: Lecture Overview
	Slide 20: Synchronization
	Slide 21: Concurrent Programs
	Slide 22: Concurrent Programs
	Slide 23: Mutual Exclusion
	Slide 24: Mutual Exclusion
	Slide 25: Mutual Exclusion
	Slide 26: Locks
	Slide 27: Semaphores
	Slide 28: Monitors
	Slide 29: Condition Variables
	Slide 30: Implementing Monitors
	Slide 31: Locks and Condition Variables
	Slide 32: Synchronization
	Slide 33: Lecture Overview
	Slide 34: Deadlock
	Slide 35: Deadlock Approaches
	Slide 36: Race Conditions

