Mitigating Application Resource Overload with
Targeted Task Cancellation

Yigong Hu

Boston University

Yile Gu
University of Washington

Zeyin Zhang
Johns Hopkins University

Shuangyu Lei
University of Michigan

Yicheng Liu
University of Michigan
University of California, Los Angeles

Baris Kasikeci
University of Washington

Peng Huang
University of Michigan

Abstract

Modern software inevitably encounters periods of resource
overload, during which it must still sustain high service-
level objective (SLO) attainment while minimizing request
loss. However, achieving this balance is challenging due
to subtle and unpredictable internal resource contention
among concurrently executing requests. Traditional overload
control mechanisms, which rely on global signals, such as
queuing delays, fail to handle application resource overload
effectively because they cannot accurately predict which
requests will monopolize critical resources.

In this paper, we propose ATROPOSs, an overload control
framework that proactively cancels the culprit request that
cause severe resource contention rather than the victim re-
quests that are blocked by it. ATROPOS continuously monitors
the resource usage of executing requests, identifies the re-
quests contributing most significantly to resource overload,
and selectively cancels them. We integrate ATROPOS into six
large-scale applications and evaluate it against 16 real-world
overload scenarios. Our results show that ATRoPOs main-
tains the performance goals while achieving minimal request
drop, significantly outperforming state-of-the-art solutions.

CCS Concepts: « Software and its engineering — Soft-
ware performance; Operating systems.

Keywords: Overload Control, Resource Contention, Request
Cancellation

ACM Reference Format:

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris
Kasikci, and Peng Huang. 2025. Mitigating Application Resource
Overload with Targeted Task Cancellation. In ACM SIGOPS 31st
Symposium on Operating Systems Principles (SOSP ’25), October

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SOSP °25, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1870-0/25/10
https://doi.org/10.1145/3731569.3764835

3 Perf. Isolation
0w 2| r————————-1 Our goal
% < | 1 Resource 1
] | container ~ PBox 1 O
g v
g | [e) (@) 1 Overload Control
| |l P ————-
ko] |
g e - ! :SEDA Breakwater Pr[oltele]go
o Better) [50] [10] o !
7] e o |
< t |
o 1
o 5 | |
Sl T oo e e e |
I} » Better
lower higher

SLO Attainment
Figure 1. Design space for mitigating application resource overload.

Isolation approaches partition resources among requests, limiting
SLO attainment under overload.

13-16, 2025, Seoul, Republic of Korea. ACM, New York, NY, USA,
16 pages. https://doi.org/10.1145/3731569.3764835

1 Introduction

Modern software is designed to maximize the utilization of
available resources and deliver high performance. However,
running a system near peak throughput makes it vulnerable
to overload, where a short spike in demand can lead to a
large number of service-level objective (SLO) violations. A
classic consequence is the receive livelock [38], where the
system is busy processing incoming requests and cannot
make progress in completing pending requests.

Besides receive livelock, overload can also be caused by
contention on application-level resources, such as table locks
or buffer pools in a database. In these cases, a single request
may hold a resource for a long time and block other requests
requiring this resource. Such resource overload is difficult to
mitigate because one request’s impact depends on the sub-
tle and unpredictable interactions with others. This unpre-
dictability is exacerbated by the variability in how different
requests access resources in modern systems. For instance, a
short single-row update query might lock a table for only 2
ms, whereas a long, grouped write request could hold locks
on multiple tables for hundreds of seconds. Consequently,
a single long-running write query may cause much more
severe overload than hundreds of shorter requests combined.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731569.3764835
https://doi.org/10.1145/3731569.3764835

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Existing overload mitigation strategies fall broadly into
two categories (Figure 1): admission control and performance
isolation. Admission control mechanisms favor throttling
incoming requests or reducing load [10, 50, 56]. These ap-
proaches assume the overload is caused by total demand.
They perform poorly under application-level resource over-
load due to the lack of insight into individual request be-
havior. As a result, they often indiscriminately drop many
requests that are victims of the overload, before they are
served at all, instead of specifically targeting requests that
are culprits of the overload. This indiscriminate drop of re-
quests severely damages application usability. On the other
hand, performance isolation allocates resource quotas to
each request [4, 25]. The static resource partitions cannot
adapt to highly variable workloads, leading to low resource
utilization and high tail latency.

These limitations raise the following research question:
how to enable applications to maximize SLO attainment under
resource overload while minimizing request drops?

To address this question, we design ATROPOS, an overload
control system whose core principle is to actively identify
requests that monopolize the resource and cancel those re-
quests, rather than deny requests that are victims of resource
overload. ATropros does not perform admission control di-
rectly, but aims to maximize the chance that a request is
admitted (served) and focuses on ongoing requests instead
of pending requests. It monitors the overall application re-
source usage and the resource consumption of each execut-
ing request. When a resource is about to overload, ATROPOS
identifies and cancels the request that if canceled, would
release the most load on the contended resource.

ATRrOPOS provides two abstractions to simplify the esti-
mation of resource overload. First, it groups all application
activities—both requests and background tasks into individ-
ual cancelable tasks, which are units of work that can be can-
celed. It attributes resource usage to these cancelable tasks.
Second, ATROPOS provides an application resource abstraction
that unifies a variety of resources, enabling resource-agnostic
cancellation policies. Each application resource exposes two
performance metrics: contention level, a measure of resource
contention and resource gain, which estimates how much
load would be freed by canceling a given request. ATROPOS
continuously monitors resource usage. When resource over-
load is detected, it proactively cancels the task that offers the
greatest resource gain to quickly alleviate contention before
the end-to-end performance decreases significantly.

While providing general support for canceling an execut-
ing request safely is challenging due to the diverse and com-
plex cancellation logic in each application, our study reveals
opportunities to enable safe request cancellation. We ana-
lyze 151 popular applications and find that 76% applications
already implement custom cancellation logic to safely termi-
nate ongoing requests. Our study further shows that most
applications follow a common cancellation design pattern:

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

gzsk’-E-Nodump o e

Q 20k { 5~ 0.001% dump
0.01% dump

5 15k

1= No dump
~&— 0.001% dump
0.01% dump

_;) 10 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 Sb 5‘5 6‘0
Offered Load (kQPS)
Figure 2. Impact of dump queries on buffer pool contention.

they expose a cancellation initiator to trigger the cancella-
tion. This observation inspires us to hook ATrRoPOSs to the
existing cancellation initiator functions in each application
to perform cancellation safely.

ATROPOS aims to provide a general resource overload con-
trol framework applicable to diverse software. We imple-
mented ATRopOs for three programming languages: C/C++,
Java, and Go, and integrated it into six widely-used, large ap-
plications: MySQL, Apache, PostgreSQL, Elasticsearch, Solr,
and etcd. To evaluate its effectiveness, we reproduced 16
real-world application resource overload issues and com-
pared ATroros with Protego [11], a state-of-the-art overload
control mechanism; pBox [25], a request-level performance
isolation framework; and DARC [14], a request-aware sched-
uling framework. Our evaluation shows that ATROPOS out-
performs all three systems in the evaluated cases. ATROPOS
sustains 96% of the baseline throughput and keeps the 99th
tail latency within 1.16x compared to the non-overloaded
case, while dropping fewer than 0.01% of requests.

In summary, this paper makes the following contributions:

e We propose a novel overload control mechanism based
on selective runtime request cancellation, enabling
effective mitigation of resource overload.

e We develop ATROPOSs, a general and resource-agnostic
framework that proactively cancels culprit requests to
mitigate application resource overload.

e We demonstrate the practicality and effectiveness of
ATROPOS in six complex, large-scale applications across
three programming languages.

2 Background and Motivation
2.1 Application Resources Overload

Application resources are logical abstractions defined by an
application. These resources typically encapsulate underly-
ing system resources, such as memory or synchronization
primitives, to provide higher-level, application-specific func-
tionality. To concretely discuss the challenges of mitigating
application resource overload, we present two real-world
case studies of application resource overload in MySQL.

Case 1: Buffer Pool Overload: MySQL’s InnoDB storage
engine maintains a buffer pool to cache table and index to

Mitigating Application Resource Overload with Targeted Task Cancellation

"]

8 25k 7 —o- Lock Contention

| —&— Drop Scan o

Drop Backup &
y

Ki
N
)
~

=
«
~
N
\/
\
!

Throughput (KQ
u S
~ =

o

- —©— Lock Contention
—5— Drop Scan
Drop Backup

2N oW b
S o
!

=)
L

p99 Latency (s)

o
L

I T b w0 25 30 » 4 4 % 5 0
Offered Load (kQPS)

Figure 3. Performance impact of table lock contention. Lock Con-

tention runs both scan queries and the backup thread. Drop Scan

represents workloads without scan queries, and Drop Backup rep-

resents workloads without the backup thread.

accelerate query execution. However, when this buffer pool
becomes overloaded, it can trigger thrashing, where MySQL
spends a lot of time evicting and loading pages between the
buffer pool and disk [45, 54]. This buffer pool contention is
further complicated by the fact that different types of request
consume varying amounts of buffer space, making it difficult
to predict the performance impact of each request.

To better understand how different types of queries impact
the buffer pool, we set up a MySQL with a 512 MB buffer
pool and populated it with 2 GB of data. We executed two cat-
egories of queries: lightweight operations, e.g., point-select
and row-update queries, each consuming only a few kilo-
bytes of buffer pool space and heavy dump queries, which
use roughly 2 GB of buffer space. We tested the impact of
dump query under three workload scenarios: a baseline with
no heavy dump queries, adding heavy queries at a ratio of
1:100K, and a third scenario increasing this ratio to 1:10K.

Figure 2 shows the performance results in the three work-
loads. Even a small number of heavy dump queries reduced
the maximum throughput from approximately 25K QPS in
the baseline to around 18 K QPS with 0.001% dump query
and around 12K QPS with 0.01% dump query. Furthermore,
tail latency increased sharply and at much lower overall
load levels when dump queries were introduced. While such
dump query are rare in typical workloads, our results clearly
show that even a tiny proportion can severely degrade per-
formance when the buffer pool is already nearing saturation.
The key takeaway is that during heavy load periods, resource-
intensive dump queries should ideally be delayed until the
system returns to a less loaded state.

Buffer pool contention occurs independently of the overall
system memory pressure. The buffer pool is configured to be
smaller than the total system memory. Therefore, monitoring
overall system memory usage alone is insufficient to detect
or mitigate buffer pool contention effectively.

Case 2: Table Lock Overload: MySQL uses table locks to
manage concurrent table access. Typically, these locks are ef-
ficiently managed, but complex interactions among requests
can sometimes cause locks to be held longer than necessary

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

and thus exacerbate the lock contention. For example, the
MySQL backup query acquires write locks on all tables before
obtaining the necessary metadata locks. The backup query
normally holds these locks very short with little disruption.
However, due to some subtle interactions, a long-running
table scan query can cause the backup query to hold the
table locks much longer than intended and prevent MySQL
from processing subsequent write queries [29, 46].

To demonstrate this scenario, we reproduced the backup
query overload issue using a database containing five ta-
bles, each with 1 M rows. We ran two types of queries: long-
running table scan query and lightweight operations (point-
select and row-update queries). Specifically, we executed a
mixed workload primarily consisting of lightweight opera-
tions and introduced one scan query at 5, 10, and 15 seconds
and launched a single backup query at 20 seconds. As Figure 3
shows, under lock contention, MySQL end-to-end through-
put dropped sharply to around 11 K QPS. When we remove
the backup query or the table scan queries, the throughput
restores to approximately 25K QPS. This case shows how a
single problematic request can significantly impact overall
system performance.

These two cases highlight that a small number of problem-
atic requests can have a severe impact on system overall per-
formance. Such problematic requests can significantly reduce
maximum throughput, dramatically increase tail latency,
and even cause system stalls. Dropping non-problematic re-
quests can temporarily preserve SLO attainment but cannot
effectively resolve the underlying performance interference
caused by the problematic requests.

2.2 Limitation of Existing Solutions

Traditional overload control mechanisms keep track of global
signals such as queue length to adjust the admitted workload.
However, these signals are ineffective in managing the appli-
cation resource overload, whose severity depends heavily on
the application-specific logic. Application resources are logic
abstractions managed by applications and thus invisible to
the system. For example, Breakwater [10] predicts queuing
delays for incoming requests based on past observations but
it cannot directly associate the global queuing delay with
contention on specific resources such as MySQL buffer pool
contention. Without knowing in advance which requests
will monopolize critical resources, Breakwater is unable to
accurately identify and drop problematic requests.

Protego [11] allows requests to execute normally. It dy-
namically detects lock contention and drops requests during
execution. However, Protego only monitors each request’s
locking delay and drops requests whose lock wait times
are approaching SLO violations. In other words, it cancels
requests that are victims of lock contention rather than iden-
tifying and canceling the requests causing the contention.
Consequently, Protego often treats symptoms rather than

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

pBox —A— Atropos

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

—=— Protego —o— Atropos pBox

—=— Protego pBox —A— Atropos —=— Protego
w12 -
210 £
21 $ 1000
Do = T
3 Y ————a
3 g — —g = 100
£06 2
[o 10
g 0.4 ¢
= i 19
3 0.2 5

0.0 Z o1

Drop Rate
Noow
2L R
X R

-
Q
R

Q
X
L

5 10 15 20 25 30 5 10
Offered Load (kQPS)

(a) Normalized Throughput

Offered Load (kQPS)
(b) Normalized p99 Latency

20 25 30 s 10 15 20 25 30
Offered Load (kQPS)

(c) Drop Rate

Figure 4. Performance of Protego, pBox, and Atropos evaluated in case 2. Metrics are normalized by the non-overloaded performance.

Language Applications Supporting Cancel With Initiator

C/C++ 60 49 46
Java 34 25 25
Go 44 32 29
Python 13 9 9
Total 151 115 (76%) 109 (95% of 115)

Table 1. Prevalence of task cancellation support in 151 popular
open-source applications, including built-in initiators for launching
cancellation.

addressing the root cause and thus is ineffective in mitigating
application resource contention.

Another potential solution is performance isolation, which
mitigates performance interference by assigning resource
quotas to requests [14, 25]. State-of-the-art systems such as
pBox [25] do not rely on static quota but dynamically adjust
resource allocations based on observed request performance.
It estimates resource usage per request by tracing specific in-
ternal events, and reallocates resources away from requests
that consume excessive resources. However, such perfor-
mance isolation mechanisms do not drop running requests.
Therefore, while isolation proactively manages resource allo-
cation, it cannot directly mitigate resource overload caused
by problematic requests already executing.

We demonstrate these limitations by evaluating existing
overload control and performance isolation techniques us-
ing the table lock overload scenario (case 2 in Section 2.1).
Figure 4 compares the normalized throughput, tail latency,
and request drop rate of Protego, pBox, and ATRopOs. Pro-
tego successfully bounds tail latency by dropping requests
experiencing excessive lock contention. However, because it
does not specifically target the problematic backup request,
it must drop many non-problematic requests, significantly
reducing throughput and increasing the overall drop rate.
pBox partially mitigates resource overload by reallocating
contended application resources, but since it cannot drop
the problematic request that already holds critical resource,
it fails to fully recover from severe resource overload.

2.3 Challenges

Since the behavior of individual requests on application re-
sources is highly variable and difficult to predict in advance,

existing mechanisms inevitably misclassify problematic re-
quests and allow them to execute. An effective overload
control system should allow requests to execute first, ob-
serve their actual impact, estimate each request’s current
and future resource usage, and selectively cancel those that
monopolize critical resources. Such selective cancellation is
key to maintaining SLO while keeping the drop rate low.

While dropping a running request helps more effectively
mitigate resource overload, this action also changes the ap-
plication’s execution logic and risks introducing dangerous
side effects. For example, naively killing the backup thread
while it is actively backing up tables could leave the data-
base in an inconsistent state, where some tables are backed
up and others are not. Requiring developers to significantly
change their application code to accommodate an overload
control solution for dropping running requests can incur
high manual effort and be error-prone.

2.4 Prevalence of Task Cancellation

Cancellation must be used carefully to preserve end-to-end
semantics. We observe that task cancellation has become an
increasingly common feature in mainstream programming
languages, many of which now provide built-in cancella-
tion constructs. For example, Go offers the Context pack-
age [30], where canceling a parent context automatically
cancels all dependent work. Similarly, Java supports threads
interrupt() [39], C# provides CancellationToken [35], and
C++ 20 provides stop_token [12]. Many libraries and OSes
also provide cancel APIs, e.g., pthread_cancel in the pthread
library [34], the pthread_cancel system call in Linux, and the
CancelIoEx Win32 API These mechanisms provide a strong
foundation for implementing safe task cancellation.
Application developers often use these built-in mecha-
nisms as building blocks to implement their own application-
specific cancellation mechanisms. Such customized mecha-
nisms are typically exposed as APIs that allow users to drop a
running request. Developers carefully decide when and how
to cancel requests, ensuring that cancellation is performed
safely. For example, most applications set a cancellation flag
when a cancellation request is issued and instrument spe-
cific checkpoints where it is safe to check this flag. At those
checkpoints, the application can stop the request, perform
necessary cleanup of critical internal state, and preserve

Mitigating Application Resource Overload with Targeted Task Cancellation

Application
request

O~

Task Task Drop (§ 3.6)
Background Build-in
o | [Boctomnd | [
Task Task 1

Jo o

Atropos Runtime Manager (§ 3.1 & § 3.2) ‘ Policy (§ 3.5) ‘
[Per-task Resource Usage] I
lo ID | Contention level | Resource gain

Atropos
‘ Estimator (§ 3.4) ?

Figure 5. Overview of ATROPOS.

invariants before moving on to the next request. Because
developers explicitly exclude unsafe operations from being
cancellable, these customized mechanisms are generally safe.

To understand how prevalent customized cancellation is
in practice, we conducted a study of 151 popular open-source
software projects from platforms such as GitHub and GitLab.
Applications were selected based on popularity metrics, such
as the number of stars. For each application, we manually
reviewed its documentation, development logs, user manuals,
and source code. If an application exposed a general-purpose
cancellation API along with a corresponding implementation,
we categorized it as supporting task cancellation.

Table 1 summarizes the results. We found that the majority
of our studied applications (76%) implement task cancellation
within their codebases. Among these, 95% rely on develop-
ers to manually decide when and where cancellation can be
safely performed. Applications that do not support cancella-
tion are typically non-interactive systems, such as libraries
or simple single-threaded key-value stores, where cancel-
lation is unnecessary. Based on these findings, rather than
re-implementing a generic cancellation mechanism from
scratch, ATrRoPOs leverages each application’s existing can-
cellation support to ensure safety and consistency.

3 Design of ATROPOS

We present ATROPOs, an overload control system that selec-
tively cancels requests responsible for monopolizing applica-
tion resources and causing an overload. To accurately iden-
tify and drop problematic requests, our high-level strategy is
to directly track application resource usage and uses this in-
formation to guide cancellation decisions. Unlike traditional
overload control mechanisms that react only to end-to-end
performance signals, ATROPOS proactively monitors the re-
source impact of each admitted request and cancels those
most likely to cause performance degradation.

Figure 5 shows the high-level architecture of ATROPOS. De-
velopers first use ATrRorPos’ APIs to identify and register user
requests or internal background tasks as cancellable tasks

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

(a) Main APIs to integrate ATROPOS.

Enable Autocancel

// Mark the scope of cancellable task.
cancellable *createCancel(uint key);
void freeCancel (cancellable *c);

// Register callback function to task cancellation.
void setCancelAction(void (*func)(unsigned long));

(b) APIs for tracking per-task application resource usage.

Tracing Application Resource Usage

// Enum for resource types
typedef enum {

LOCK,

MEMORY,

QUEUE
} ResourceType;

// Inform per-task application resource usage

void getResource(long value, ResourceType rscType);
void freeResource(long value, ResourceType rscType);
void slowByResource(long value, ResourceType rscType);

Figure 6. ATrROPOs APIs

(§ 3.1). At runtime, the ATrROPOS Runtime Manager (§ 3.2)
tracks resource usage for each cancellable task, capturing
their impact on various application resources (step @). When
the overload detection module (§ 3.3) observes that end-to-
end performance violates the SLO, it activates the ATroPos
Estimator (§ 3.4). The estimator then analyzes the resource
usage information provided by the runtime manager and
computes two critical metrics: resource gain and contention
level (steps ® and @). These metrics quantify current re-
source contention and predict the potential performance
improvement achievable by canceling specific tasks. Next,
the Policy Engine (§ 3.5) uses these metrics to decide which
task to cancel (step @). It selects the optimal task by bal-
ancing the severity of resource contention and the potential
resource gains from cancellation across multiple resources.
Finally, ATROPOS triggers the selected task’s built-in cancel-
lation mechanism to safely terminate its execution.

3.1 Integrating ATROPOS into Applications

Figure 6a lists the APIs used to integrate ATROPOS into an
application. At its core, ATROPOS treats all application tasks
uniformly through an abstraction called cancellable task. A
cancellable task represents a logical unit of work within
an application, such as a user-issued database transaction,
background operations (e.g., garbage collection or deadlock
detection), or groups of requests sent from a single user.
Developers decide how application tasks should be aggre-
gated into cancellable tasks. For example, they can either
group all requests from a single user into one cancellable
task or treat each request as a separate cancellable task. The
createCancel and freeCancel APIs define the scope of can-
cellable tasks. When registering a task via createCancel, de-
velopers may optionally provide a unique key to explicitly
identify the task. If a unique key is not provided, ATROPOS

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

void *do_handle one connection(THD *thd) {

‘Cancellable* c = createCancel (thd->id);
/* Handle queries form one user */

for (i) {
rc = thd prepare connection(thd)
if (re) (

close_connection(thd);
|freecancellable(c);
return;
)
while (thd_is_connection_alive(thd))
if (do_command(thd)) break;
}
} sql/sql_connect.cc

void *mysqld main(int argc, char** argv) {

/* Initializing services */

sys_var_init();

[setCancelaction(sqgl kill);
}

sql/mysqld.cc
Figure 7. Example of setting cancellation in MySQL.

generates a unique key automatically. To facilitate safe can-
cellation, developers must specify the application’s cancel-
lation initiator by providing a function pointer to ATROPOS
through the setCancelInitiator. ATROPOS calls this regis-
tered callback function when it decides to cancel a task.

Figure 7 shows how MySQL, a widely used database sys-
tem, integrates with ATropos. In this example, we group
all requests from a single user connection into a cancellable
task. We register MySQL’s built-in cancellation initiator func-
tion, sql_kill at the main function. We call createCancel
when a client connection begins, and subsequently invoke
freeCancel when the connection terminates.

3.2 Per-task Resource Usage Tracking

ATroPOS’ task manager is responsible for managing can-
cellable tasks and attributing resource usage to each task.
The task manager assigns each cancellable task with a unique
task ID and maintains a mapping between cancellable task
to their corresponding application-level activities.

A key challenge is tracing different types of resources that
exhibit complex and diverse usage patterns. For system re-
sources such as CPU or network, ATROPOS can monitor usage
by using existing tools like cgroups and attributing resource
consumption to the threads executing each task. However,
application resources are much harder to trace because their
usage patterns are deeply tied to application-specific logic.
For example, a queue may be used for task scheduling in
one application and for message passing in another. These
variations mean that application resources lack standardized
hook-up interfaces. Blindly instrumenting all possible usage
points would introduce significant overhead.

AtRroPOs addresses this challenge by unifying all resources
under a single abstraction: the application resource. Each ap-
plication resource supports three operations: get, free, and

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

buf_block_t* buf_page get_gen(
buf_ pool_t* buf pool) {

loop:
block = buf LRU get_free block(buf_pool);
if (block) {
‘getResource(block, MEMORY) ‘
return block;
} else {
/* If no block is in the free list, flush a
dirty page */
freed = buf LRU scan_and_ free block(buf_pool);
[slowByResource(freed, MEMORY)

goto loop;

}
sql/bufObuf.cc

/* Free a buffer page */
bool buf LRU_free_from common LRU_list(
buf pool t* buf pool, bool scan_all)({
bpage = buf_ pool->LRU
while (!freed) {
freed = buf LRU_free page(bgpage);
bpage = get_prev(bpage);
}
|EreeResource (freed, MEMORY)
return (freed);

}

sql/bufOlru.cc
Figure 8. Example of tracing buffer pool in MySQL.

wait. To capture these operations, ATROPOS provides three
resource tracing APIs, shown in Figure 6b. The getResource
API records when a task acquires a resource; freeResource
records when a resource is released; and slowByResource
records when a task is delayed while waiting for a resource.
Each API takes two parameters: value, which specifies the
resource being acquired, released, or waited on, and rsc-
Type, which specifies the resource type. Currently, ATROPOS
supports three categories of application resources: (1) syn-
chronization resources, representing resources protected by
synchronization primitives; (2) queue resources, representing
application-managed task queues; and (3) memory resources,
representing application-managed memory pools or caches.
This unified abstraction allows ATroPos to handle different
types of resource contention consistently. Equally important,
it enables incremental extensions to support new resource
types without requiring changes to the core framework.
The three APIs are straightforward to instrument. Figure 8
shows how MySQL uses these APIs to report buffer pool
usage in Case 1 (Section 2.1). When a request acquires a new
buffer page from the buffer pool, it calls buf page get gen()
to return a pointer to the new page. The getResource API
is invoked just before returning the page to record the get
operation. If MySQL cannot obtain a free buffer page, it calls
buf LRU scan_and_free_block() to evict a dirty page. In this
case, the slowByResource API is placed immediately after
the eviction function to capture the delay. Finally, when the
request releases a buffer page through buf_LRU_free(), the
freeResource API is invoked to record the release operation.
ATRoOPOS ensures that its resource usage tracking works
correctly with common system optimizations such as batch-
ing and asynchronous processing. For batching, ATRoPOS

Mitigating Application Resource Overload with Targeted Task Cancellation

attributes the resources consumed by each individual request
within a batch. For example, in MySQL, updates from multi-
ple queries are batched in the same buffer pool. Whenever a
query acquires a buffer pool page, ATROPOS instruments a
call to the getResource API and attributes that page to the
calling query. For asynchronous processing, the tracing logic
is identical to the synchronous case because the APIs are
inserted directly at the resource usage points.

The overhead of each API is minimal, as ATRopos only
records a tuple (value, rscType, eventType) along with a times-
tamp. We use the rdtsc instruction to measure CPU cycles.
To further reduce overhead, instead of recording a timestamp
for every event, ATROPOS samples timestamps at fixed in-
tervals and assigns the same timestamp to all events within
that interval. While this batching approach reduces times-
tamp precision, it is sufficient to detect tasks that monopolize
resources. To improve accuracy when needed, ATrRopPOS dy-
namically switches to record the timestamps for every event
when the detection module detects a potential overload.

3.3 Triggering Cancellation

ATrOPOS has an overload detection module that periodically
monitors the software’s end-to-end performance to detect
resource overload and trigger a cancellation decision. As
shown in our case study 2.1, resource overload often exhibits
patterns similar to regular overload. Thus, ATROPOS’s detec-
tion module leverages the state-of-the-art overload detection
method [10]. Specifically, it continuously monitors appli-
cation throughput and latency. When latency exceeds the
service-level objective while throughput remains flat, this
indicates a potential resource overload. In such cases, the
detection agent notifies the ATROPOs estimator, which then
verifies whether a specific application resource is the bottle-
neck. If a bottlenecked resource is confirmed, the estimator
classifies it as a resource overload and triggers a cancellation
decision. Otherwise, the performance degradation is classi-
fied as regular overload; ATrRoPOS invokes other overload
control mechanisms in place to handle it.

3.4 Estimating Resource Overload

When ATROPOS receives a resource overload signal, it needs
to identify which resource is overloaded and which request
is monopolizing the resource. To support the wide variety
of resources in practice, ATROPOs characterizes the resource
contention using two general, unit-less metrics:

e Contention level: a per-resource metric that quanti-
fies the severity of contention for that resource.

e Resource gain: a per-task metric that estimates how
much of the resource would be freed if the task were
canceled.

Below, we detail how ATroPOS calculates these metrics
for the three supported application resource types:

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Memory Related Resources: Intuitively, buffer pool con-
tention reflects how often queries must evict existing pages
to make room for new ones. The more frequently evictions
occur, the higher the contention, since queries compete ag-
gressively for limited buffer space. For example, in Case 1
(Section 2.1), suppose that query i acquires M; buffer pages
from the buffer pool, releases F; pages, and causes E; evic-
tions during a certain interval. The buffer pool contention
level can be computed as the average eviction ratio: %
As shown in Figure 8, the number of pages acquired corre-
sponds directly to the number of getResource API calls in
the buffer pool, while the number of evictions corresponds
to the number of slowByResource API calls. Both are traced
by the ATrRoPOS Runtime Manager.

Defining resource gain for memory resources is challeng-
ing. Intuitively, it could be defined as the number of buffer
pages held by a request, expressed as M; — F;, since canceling
the request would immediately free those pages. However,
this definition only captures the memory released at the mo-
ment of cancellation and does not reflect the true benefit of
dropping the request. For example, consider two requests
that both monopolize the buffer pool. Query A has completed
90% of its workload, while Query B has completed only 10%.
Although Query A holds more buffer pages than Query B,
canceling this nearly finished query would bring less per-
formance benefit than canceling Query B. To make matters
worse, because Query B is just beginning, even if Query A
were canceled and its buffer pages freed, Query B would
eventually monopolize the buffer pool again. Thus, mea-
suring resource gain by current memory usage incorrectly
biases the decision toward long-running tasks that are close
to completion, rather than tasks that still have substantial
memory demand ahead.

We instead define resource gain as the future memory us-
age of a task as. To estimate future usage, ATROPOS assumes
that a task’s remaining resource demand is proportional to
its remaining workload. Under this model, the resource gain
is calculated as the current resource usage multiplied by

progress, expressed as (M; — F;) * %. To estimate task
progress, ATROPOs employs the well-established GetNext
model [20], which defines progress as Prog(i) = ﬁ, where k
is the number of rows already processed by the operator and
N is the total number of rows expected by completion. This
model is suited for applications with quantifiable progress
information, such as databases and search engines. For exam-
ple, MySQL has the internal variable rows_examined, which
records the number of rows processed by a request, and the
variable estimatedRows, which stores the optimizer’s esti-
mate of the total rows to be processed. ATROPOs can read
these values for each request to obtain accurate progress in-
formation. For applications without such metrics, ATROPOS
provides an API that allows developers to explicitly support
accurate progress estimations.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

While the proportional assumption is strong and may be
inaccurate for many resources, it remains a valid and effec-
tive choice in the context of cancellation. First, building an
accurate prediction model typically requires heavyweight
analysis, which would incur high runtime overhead and is
unsuitable for fast decision-making. In ATROPOS, cancella-
tion decisions need to be made at microsecond granularity
with negligible overhead. Second, the goal of ATROPOS is
to identify requests that monopolize resources. We observe
that heavy, resource-intensive requests tend to dominate a
resource for most of their execution lifecycle, making the
proportional assumption sufficiently accurate in practice
for these cases. Finally, even if a misprediction occurs, the
consequence is minor: canceling a suboptimal request. At-
ROPOS can simply issue another cancellation until the true
monopolized request is identified.

Synchronization Resource: For resources protected by
synchronization primitives, contention can be defined as
the ratio of the time requests spend waiting to acquire the
resource compared to the time they spend actually using
it. If the waiting time dominates the total execution time, it
indicates that multiple requests are blocked and the resource
is overloaded. Consider the table lock in MySQL as an ex-
ample. Suppose a write request i monopolizes the table for
E; seconds while multiple read requests j each access the
table for E; seconds. The contention level can be expressed

as Zf—é_.The waiting time for a synchronization resource
Jj I

is measured as the timestamp difference between the wait
and the get event and the usage time is measured as the
timestamp difference between get and release event.

The resource gain is defined as the amount of time a re-
quest holds the resource. Similar to memory resources, this
metric is defined in terms of the future resource holding time.
It is calculated as the current holding time multiplied by the
remaining workload fraction, %_Z?i()i)' For example, if a
write request has already held a table lock for 1 second and
has completed 40% of its workload, the estimated resource
gain is 1 X % = 1.5 seconds.

Queue Resource: The contention level for queue resources
is defined as the ratio of the time requests spend waiting in
the queue to the time they spend executing after leaving the
queue. A higher ratio indicates more severe contention, as
the tasks wait longer than they run. For example, if a request
waits in a task queue for an average of 1 second but takes
only 0.1 seconds to execute, the contention level is 10. The
resource gain for a queue resource is defined as the expected
future thread time a task will consume.

3.5 Multi-objective Cancellation Policy

After the ATROPOS estimator computes the contention level
for each resource and the resource gain for each task-resource
pair, ATrRoPOs must select the request whose cancellation
gains the largest performance benefit. A simple policy is to

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

cancel the task with the greatest resource gain on the most
contended resource. Formally, let r* = arg max, Contention(r).
ATRrOPOS cancels request = arg max; Gain(t, r*).

However, this policy assumes that resource gains from dif-
ferent resources contribute equally to performance improve-
ment. In real-world applications, the performance impact of
different resource is not directly comparable. For example, a
buffer pool’s contention level is the eviction ratio, while a
table lock’s contention level is the lock waiting time. Even if
both report the same numeric value (e.g., 20%), the implica-
tions are very different. Additionally, resource overload may
occur across multiple resources at the same time. Selecting
a task based on the most congested resource might identify
one that is optimal for that resource but suboptimal overall.
For example, suppose there are two overloaded resources,
A and B. Task X has a resource gain of 3 on A and 0 on
B, while Task Y has a gain of 2 on A and 2 on B. In such
cases, it is difficult to say that canceling Task X is better than
canceling Task Y, since the performance benefit depends on
how resource gains across different resources.

To make contention level comparable across different re-
source types, we normalize contention on a per-window
basis by expressing it as the fraction of the request’s exe-
cution time lost to a given resource. Let Teye. denote the
request’s execution time in the window (baseline), and let
D, be the contention-induced delay attributed to resource r.

We define C, = TZ = For memory resources, the delay D, is
computed as eviction time weighted by contention level. For
synchronization and queue resources, the delay corresponds
to the measured waiting time.

With the normalized metric, the next question is how to
identify the optimal request for cancellation. Inspired by
multi-objective optimization problems (MOOPs) in opera-
tions management [13], we propose a multi-objective cancel-
lation policy that evaluates the impact of canceling a task
across multiple resource. The key insight is that the perfor-
mance improvement from cancellation is not determined by
the single most contended resource, but by the combined
gains across all resources. Similar to MOOPs, our approach
seeks to identify the task whose cancellation gains the largest
overall performance benefit across all resources.

To identify the request that provides the greatest overall
performance benefit, we leverage the concept of the non-
dominated set from multi-objective optimization. Intuitively,
the non-dominated set consists of cancellable tasks whose
cancellation brings strictly greater resource gains compared
to tasks outside the set. For example, a task that provides 5
units of resource gain in resource A and 2 units of resource
gain in resource B clearly dominates another task that pro-
vides only 4 units of resource gain in resource A and 1 unit
of resource gain in resource B. ATrRopos identifies all tasks
that belong to this non-dominated set. Lines 2-10 of Algo-
rithm 1 outline this process: the algorithm iterates over all

Mitigating Application Resource Overload with Targeted Task Cancellation

Algorithm 1: Multi-objective Policy

Vars: taskMap - Statistics of each cancellable task
Vars: resourceMap - Statistics of each resource
1 /* Find the dominator tasks */;
2 for taskA € taskMap do
if is Cancellable(task;) then
candidate « true;
foreach taskB € taskMap do
if dominate(taskB, taskA) then
candidate « false;
break;
if candidate then
10 ‘ dominator_tasks.add(taskA);
11 /* Find the optimal task to cancel */;

N

L S

12 for task € dominator_tasks do

13 total_gain « 0;

14 for resource € resourceMap do

15 content_level < getContentLevel(resource);

16 gain «— getResourceGain(task, resource);

17 total_gain « total_gain + content_level - gain;
18 if total_gain > max_gain then

19 max_gain < total_gain,

20 best_task « task;

21 return best_task;

cancellable tasks, comparing their resource gains across each
resource type to determine whether a task is dominated. A
task is included in the non-dominated set if it has strictly
larger resource gain in at least one resource and is no worse
in all others compared to every other task.

As shown in lines 12-20, once the non-dominated set is
identified, ATrROPOSs selects the optimal task through scalar-
ization, which combines multiple objectives into a single
scalar value by assigning weights to each objective. Con-
sider a resource overload case with two contended resources:
a buffer pool and a table lock. Suppose their normalized
contention levels are Cpem = 0.6 and Cioex = 0.4. Task A pro-
vides 3 units memory gain and 1 unit lock gain, while Task
B provides 2 units memory gain and 2 units lock gain. Using
scalarization, Task A’s score is 0.6 X3+0.4X 1 = 2.2, whereas
Task B’s score is 0.6 X 2+0.4 X 2 = 2.0. Thus, ATROPOS selects
Task A for cancellation. We use contention level as the weight
to reflect the intuition that reducing contention on heavily
congested resources brings greater performance benefits.

The policy only considers tasks that developers explicitly
register as cancellable using the createCancel API Tasks that
do not support cancellation, or are not marked as such, are
excluded from the algorithm. While this restriction means
that the policy may occasionally overlook the globally opti-
mal task to cancel, it guarantees that cancellation is always
safe and consistent, preventing unintended termination of
tasks that could violate application correctness.

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

3.6 Handling Task Cancellations

ATroPOS statically instruments each cancellable task with a
setCancelAction callback that invokes the application’s cus-
tomized cancellation mechanism. Because these mechanisms
are implemented by developers, they ensure that cancellation
is performed safely and consistently. In applications without
built-in cancellation support, ATROPOS provides an optional
flag that enables library-level cancellation, such as invoking
pthread_cancel. However, this approach is coarse-grained
and potentially unsafe because it operates at the thread level
rather than the application-task level. As a result, it may
terminate threads holding critical variables or locks, leaving
the system in an inconsistent state. Therefore, this flag is
disabled by default and can only be enabled when developers
explicitly determine that thread-level cancellation is safe for
their application.

4 Implementation

We implemented ATRoPOs in three programming languages:
C/C++, Java, and Go, with 4,002, 3,534, and 2,106 lines of
code, respectively. While the core design principles remain
consistent across all language implementations, ATROPOS
adapts to each language’s specific features and runtime en-
vironments. In C/C++, we provide ATROPOS as a user-space
library that applications can directly link and invoke. In Java,
we implemented ATROPOS as a CancellableTask class, which
application tasks inherit to leverage cancellation function-
ality. In Go, we integrated ATroros directly into the Go
runtime, enabling direct tracking of resource usage metrics
such as goroutine wait times.

AtroPOs is mainly designed for single-node applications.
Its abstractions, however, can extend to distributed systems
where a single user request may span multiple nodes. In such
cases, the ATropros task manager could associate child tasks
with their root request and propagate cancellation signals.
Extending cancellation to distributed systems also requires
handling failures such as crashes, timeouts, or network par-
titions. Such extensions are beyond the scope of this paper.
We leave robust distributed cancellation as future work.

Addressing Fairness Issue: The cancellation policy natu-
rally tends to target long-running requests, which can create
fairness issues and starvation on those requests. To address
fairness issues, ATROPOS provides a re-execution mechanism
that ensures canceled tasks are retried. Each task can be can-
celed at most once to prevent starvation. When re-executed,
a task is marked as non-cancellable so that subsequent over-
loads only trigger the cancellation of a different resource-
intensive request. Re-execution occurs only after sustained
resource availability has been observed. If resources do not
become available and a canceled task eventually exceeds
its SLO, ATroPOs drops the request, since it can no longer
meet its performance requirements. For background tasks,
which typically have no explicit SLO, ATrRoPOs enforces a

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

1d. Application Resource Type Resource Detail Overload Triggering Condition
cl (link) MySQL Synchronization Backup lock A subtle interaction causes backup queries to hold write locks for long time.
c2 (link) MySQL Thread pool Innodb queue Slow queries monopolize the InnoDB queue, exceeding its concurrency limit.
c3 (link) MySQL Synchronization ~ Undo log Background purge task blocks causes contention on the undo log
c4 (link) MySQL Synchronization Table lock SELECT FOR UPDATE query blocks other clients’ insert query
c5 (link) MySQL Memory Buffer pool Scan query monopolizes the buffer pool and causes contention with other queries
c6 (link) PostgreSQL Synchronization Table lock The write operation slows down the other query due to MVCC
c7 (link) PostgreSQL ~ Synchronization =~ Write aheadlog ~ The background WAL task causes group insertion and blocks other queries
c8 (link) PostgreSQL System System IO The vacuum process causes contention on IO and slows down other queries
c9 (link) Apache Thread pool Thread pool Slow request blocks other clients’ requests when the max client limit is reached
c10 (link) Elasticsearch Memory Query cache A large search slows down other queries due to cache contention
c11 (link) Elasticsearch Memory Buffer memory The nested aggregation exhausts heap memory causing frequent garbage collection
c12 (link) Elasticsearch ~System CPU The long running queries cause CPU contention and slow down other requests
c13 (link) Elasticsearch ~Synchronization =~ Document lock A large update blocks other requests
c14 (link) Solr Synchronization Index lock Complex boolean request slows down other requests
c15 (link) Solr Thread pool Solr queue Nested range queries occupy thread pool and block other requests
16 (link) etcd Synchronization — Key-value lock Complex read query blocks other queries
Table 2. Description of 16 real-world application resource overload cases that we reproduced.
Software Language Category SLOC SLOC Added web servers, search engines, and key-value stores. Integra-
ion is primarily instrumenting ATROPOS’ r rce tracin
WSOl CC Dambae | 2mM 7 ton s primarily instrumenting ATROFOS resource tracing
PostgreSQL C/C++ Database 1.49 M 59 s (Figure .6) to tra.c usage of application-define : re-
Apache C/Ct Web Server 198K 30 sources. Applications with more resources naturally required
Elasticsearch Java Search Engine 3.2 M 65 slightly more code modifications; however, the overall code
Solr Java Search Engine 961K 47 modification is lightweight. The most modification is 74 lines
eted Go Key-Value Store 244K 22 of code for MySQL, which contains approximately 20 differ-

Table 3. Evaluated software and integration effort measured by
added lines of code.

maximum waiting threshold and guarantees re-execution
once that threshold is reached.

Importantly, task re-execution does not compromise ap-
plication correctness. For user requests, re-execution only
changes the execution order of incoming requests. Since AT-
ROPOS targets applications that supports concurrent request
processing, changes to request execution ordering do not
affect correctness. Similarly, re-executing background tasks
is just a normal retry of background tasks.

5 Evaluation

We now evaluate ATROPOS to answer the following key ques-
tions: (1) How effective can ATROPOs mitigate application
resource overload? (2) How does ATROPOS compare to the
state-of-art works? (3) How well is multi-objective policy?
(4) What is the runtime overhead of ATROPOS?

5.1 Experiment Setup

We conducted experiments on Microsoft Azure virtual ma-
chines [36], each configured with 16-core virtual CPUs, 64
GB DRAM, and 160 GB SSD storage, running Ubuntu 20.04.
Integration Effort: We integrated ATROPOS into six widely-
used, large-scale applications: MySQL, PostgreSQL, Apache,
Elasticsearch, Solr, and etcd. As summarized in Table 3, these
applications represent diverse categories, including databases,

ent application resources.

Compared to the code modifications, identifying all ap-
plication resources was the most time-consuming part of
integrating ATROPOs. We systematically reviewed each ap-
plication’s official documentation and community blog posts
to identify potential application resource. The amount of
manual effort depended largely on the number of resources
in each application and the completeness of its official docu-
mentation. As an anecdotal reference, locating and identify-
ing all resources in MySQL took approximately seven days
for one graduate student. Apache and etcd required about
two days each, while PostgreSQL, Elasticsearch, and Solr
took roughly four to five days each.

During manual annotation, we found a robust heuristic
that can speed up application resources annotation. Because
application resources are often implemented as global vari-
ables, we first enumerate all global variables in the codebase
and using their names, comments, and official documenta-
tion to discard variables that are clearly not resources. For the
remaining candidates, we run a static analysis to enumerate
all usage points. We then triage each usage by (i) inspecting
the function name, comments, and documentation to judge
whether the function likely uses a resource, and (ii) checking
whether the variable is shared across multiple application
tasks. If a shared variable is accessed by multiple tasks, it is
likely an application resource. After the triaging, we apply
resource-specific checks: for LOCK resources, we verify that
the variable is accessed within critical sections; for MEMORY

https://www.percona.com/blog/percona-xtrabackup-and-mysql-5-7-queries-in-waiting-for-table-flush-state/
https://dba.stackexchange.com/questions/81204/hyperthreading-mysql-innodb-thread-concurrency-performance
https://www.percona.com/blog/2014/12/17/innodbs-multi-versioning-handling-can-be-achilles-heel/
https://dba.stackexchange.com/questions/64401/optimizing-a-large-number-of-insert-select-statements/64402#64402
https://www.percona.com/blog/impact-of-swapping-on-mysql-performance/
https://www.postgresql.org/message-id/flat/21750.1371401995%40sss.pgh.pa.us#558bfea5bf549a23a05bb4a5c2077a3a
https://postgrespro.com/list/thread-id/1867581#CA+TgmobWdBcbuipWPsbHSbf+-KDmatnYQYZ=AKAjU6ALB5m+hQ@mail.gmail.com
https://www.postgresql.org/message-id/flat/CAAc9rOywTRm4CSAGST8w5q5xqou2HX7E%2Br1AL8poBPprb1PL3Q%40mail.gmail.com#be92c7d467ec895f33fc01e03936dfe9
https://serverfault.com/questions/133561/apache-reaching-maxclients-and-locking-the-server
https://github.com/elastic/elasticsearch/issues/69646
https://github.com/elastic/elasticsearch/issues/86531
https://blog.allegro.tech/2021/10/how-to-ruin-elasticsearch-performance-part-ii.html
https://github.com/elastic/elasticsearch/issues/57466#event-10371207134
https://solr-user.lucene.apache.narkive.com/6UP62QtV/too-many-boolean-clause-and-filter-query
https://issues.apache.org/jira/browse/SOLR-16515?jql=project%20%3D%20SOLR%20AND%20text%20~%20%22read%20lock%20contention%22
https://github.com/blevesearch/bleve/issues/89

Mitigating Application Resource Overload with Targeted Task Cancellation

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

(a) Normalized throughput.

I Atropos I Protego pBox DARC I PARTIES

H
< 1.0
g

0.8 1
e
<
= 0.6
3
N 0.4+
®
£ 0.2
-
[-]
2 0.0-

cl c2 c3 c4 c5 c6 c7 c8 c9 cl10 cll cl2 cl3 cl4 cl5
Case
(b) Normalized p99 latency.
Im Atropos I Protego pBox DARC I PARTIES
g
<
2 100 A
©
-
a
2 10
°
8
= 14
©
£
S
2 0.1-
cl c2 c3 c4 c5 c6 c7 c8 c9 cl0 cll cl2 cl3 cl4 cl5
Case

Figure 9. Comparison of ATRoros with state-of-the-art systems on normalized throughput and 99th percentile latency. Metrics are
normalized against each application’s baseline performance without overload.

resources, we check whether the variable appears in control-
flow condition that trigger heavy write-related library call
or syscall such as fsync or fwrite; and for QUEUE resources,
we confirm that the variable is used to store and pass tasks.

Benchmark Datasets: We collected and reproduced 16

real-world resource overload cases as our benchmark datasets.

To identify these cases, we systematically searched each ap-
plication’s official bug trackers, community forums, and tech-
nical blog posts using keywords such as “slow”, “overload”,
and “resource contention”. We selected cases with clear bug
reproduction steps that we could reliably reproduce in our
evaluation environment.

Table 2 summarizes the selected cases, categorized by the
type of resource contention involved: eight cases related
to synchronization resources, three involving thread-pool
contention, three involving memory-related contention, and
two involving system resources (CPU and I/O).

Synchronization related resources are application-critical
data structures such as table, UNDO logs or Write-Ahead
logs. Accessing these types of data requires synchronization
to protect the data integrity. Thread-pool resources represent
application defined internal queue such as the MySQL con-
current control mechanisms for accessing its InnoDB storage
engine. These internal queues are implemented by applica-
tions themselves and thus are invisible to the operating sys-
tem. Memory related resources include application-specific
caching and buffer mechanisms. System resources are CPU

and I/O, representing fundamental hardware resource over-
load that directly impact overall application performance.

To reproduce each resource overload case, we followed
detailed reproduction instructions provided in original bug
reports and community discussions. We modified the bench-
mark tools to issue the request sequences for triggering each
issue. Specifically, we modified Sysbench [28] for MySQL
and PostgreSQL, ApacheBench [17] for Apache, Rally [16]
for Elasticsearch, Solrbench [2] for Solr, and a etcdbench [1]
for etcd. For Sysbench, Rally and Solrbench, we directly use
their built-in capabilities to measure throughput and tail la-
tency. For ApacheBench and etcdbench that lack appropriate
measurement, we modified their client-side code to collect
and report detailed performance metrics.

5.2 Mitigating Application Resource Overload

We first evaluate the effectiveness of ATRoPOs in mitigating
real-world application resource overload cases. We run the
16 reproduced cases with and without ATROPOS, measur-
ing throughput and 99th percentile latency for each case.
Figure 10 summarizes our results, with metrics normalized
against each application’s baseline performance under non-
overload conditions. On average, ATROPOs bounds the through-
put across the 16 cases with an average of 96%. Additionally,
Atropos successfully bounds tail latency to an average nor-
malized 99th percentile latency of 1.16.

We compare ATROPOs against four state-of-the-art sys-
tems: Protego [11], a lock contention-aware overload control

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

(a) Normalized throughput.

—&— Overload Atropos
5
alo
5
=0v8
2
Lo6
=
EOA
l°-02
2o
0.0 T T T T T T T T T T T T T T T T
cl c2 c3 c4 c5 c6 c7 c8 c9 10 cll cl12 c13 cl4 cl5 <16
Case
(b) Normalized p99 latency.
—e— Overload Atropos
>
2 100
g
-1
]
-
g 104
-3
£
=
o
2 19
cl c2 3 c4 c5 c6 c7 c8 9 cl0 cll cl2 13 cl4 «cl5
Case

Figure 10. Performance mitigation effectiveness of ATROPOS across
16 cases.

mechanism; pBox [25], a request-level performance isolation
system; DARC [14], a scheduling framework that schedules
requests based on request type; and PARTIES [8], a resource
management framework enforcing resource isolation.

We carefully integrate each of these frameworks into our
test applications to ensure fair and consistent evaluation. For
Protego, we modified the C/C++ application code to adopt
Protego’s synchronization primitives for tracking lock con-
tention. For Java-based applications, we integrated Protego’s
core algorithm into our ATropros framework. For pBox, we
instrumented each application with pBox APIs and created
a Java library for its integration into Java applications. For
DARC, we extended its scheduling policies to recognize the
request types specific to our target software. For PARTIES,
we modified its monitoring module to trace client-level la-
tency and allocate resources at the client level.

Figure 9a shows the throughput normalized by throughput
under no overload. ATROPOs achieves an average normalized
throughput of 96%, which significantly outperforms other
systems due to its ability to accurately identify and cancel the
problematic requests responsible for resource monopoliza-
tion. In contrast, the other four frameworks: Protego, pBox,
DARC, and PARTIES achieve average throughput of 50.7%,
53.9%, 36.3%, and 37.8%, respectively. Figure 9b shows the
99th percentile tail latency results. ATROPOs bounds tail la-
tency with an average normalized tail latency of 1.16. Protego
also successfully controls tail latency (average normalized
latency of 1.88) for synchronization-related and system re-
source cases. However, Protego fails to address contention
on other application resources since it does not monitor their
usage. Additionally, pBox, DARC, and PARTIES demonstrate
limited effectiveness in bounding tail latency.

Artropos effectively improves software performance with-
out compromising application usability. Across all evaluated

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

—8— Protego Atropos
100%

80%

60% 1

40%

Drop Rate

20%

0%

c‘l c‘3 c‘4 c‘6 c‘7 c‘B c‘9 ciz ci3 ci4
Case
Figure 11. Drop rate of ATRoPOs and Protego.

. cl C2 EEE c10 BN cl]l BN cl14 mEE cl15

Latency increase

BN W s g
o o & 5 o
X R R R R

)
X

10% 20% 40% 60%
SLO goal

Figure 12. SLO maintenance under different thresholds.

cases, ATROPOS selectively cancels only requests that mo-
nopolize critical resources, resulting in an average drop rate
below 0.01%. Figure 11 shows ATROPOS advantage compared
to Protego, which must drop victim requests to control tail
latency, leading to a significantly higher average drop rate
of approximately 25%.

Incomplete Cancellation Support in Apache. When run-
ning ATROPOs with Apache, we observed that noisy requests
often execute through PHP scripts. Apache’s built-in can-
cellation mechanism does not support terminating a script
once it has started. To enable cancellation in this setting,
we turned on the system-level cancellation flag, which uses
pthread_cancel to abort the request. In this case, safety is
preserved because the script runs outside of Apache’s core ap-
plication logic. Consistency is guaranteed through Apache’s
write log: when a script writes data, Apache flushes the con-
text to persistent storage. If the context is not flushed before
cancellation, the data is simply discarded, ensuring that no
partial or inconsistent state is introduced.

5.3 Maintaining the SLO under Resource Overload

To evaluate the impact of task cancellation on meeting SLOs,
we set the SLO to tolerate up to a 20% latency increase. Using
the same reproduction scripts, we test ATROPOs across the 16
overload cases. In 14 cases, ATROPOS successfully maintains
the SLO, with an average latency increase of only 10.2%.

In the two remaining cases, the SLO could not be met
under any policy. Specifically, in case 3, ATRopoOs reduces
the latency increase to 23%, and in case 12, to 26%. The
main reason is that, to avoid excessive task termination,
Atroros enforces a small time interval between consecutive
cancellations. This introduces a trade-off between aggressive
cancellation and fast recovery. In the two cases where the
SLO could not be met, there are many noisy tasks and thus
achieving the SLO requires canceling multiple requests. As

Mitigating Application Resource Overload with Targeted Task Cancellation

Multi-Objective ~ B Heuristic Current Usage

cl 2 3 ¢4 5 6 c7 8 9 cl0 cll cl2 cl3 cl4 cl5 cl6
Case

Figure 13. Comparison of different cancellation policies.

a result, the average latency increases in these cases exceed
the 20% threshold.

To further evaluate how task cancellation performs under
different SLO requirements, we tested ATRopos with SLO
thresholds of 10%, 20%, 40%, and 60% across six cases. Fig-
ure 12 shows that in all cases, ATROPOs successfully met the
specified SLO. As the SLO becomes stricter, ATROPOS can-
cels more tasks in order to maintain the performance goal.
These results shows that ATROPOS is an adaptive cancellation
framework capable of adjusting its behavior to meet varying
SLO requirements.

5.4 Effectiveness of Multi-objective Policies

To evaluate the effectiveness of ATRoPOS’ multi-objective
cancellation policy, we compare it against two baseline poli-
cies. The first baseline policy replaces the multi-objective
algorithm with a straightforward heuristic that cancels the
request exhibiting the highest resource gain on the single
most congested resource. The second baseline keeps the
multi-objective algorithm but uses the current resource us-
age instead of predicted future resource gain.

Figure 13 shows the throughput results for all 16 cases,
normalized against the performance without resource over-
load. The multi-objective policy consistently outperforms
the heuristic-based policy in 8 out of the 16 cases and exceeds
the performance of the second baseline policy in 6 cases. The
multi-objective policy in ATRoOPOs considers the performance
impact of canceling tasks across multiple resources. Thus,
it avoids convergence to locally optimal decisions, a limita-
tion in heuristic-based greedy approaches. Additionally, by
estimating future resource gain instead of relying on current
resource usage, ATROPOs prevents bias towards canceling
requests that are already nearing completion.

5.5 Overhead

To evaluate the impact of ATrROPOs on throughput and end-
to-end latency, we benchmark MySQL, PostgreSQL, Apache,
Elasticsearch, and Solr. As mentioned in Section 3.2, the over-
head of ATrROPOS varies based on workload conditions. Under
normal workloads, ATRopPos performs lightweight tracing,
resulting in minimal overhead. Under overload scenarios,
AtroPOs performs aggressive tracing and runs cancellation
decision logic, leading to slightly higher overhead.

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

(a) Throughput overhead for each case.

s MySQL PostgreSQL Apache ElasticSearch . Solr
w 1.0
3
Qo
£os{m BN B S - - - =
(=]
3
AEEEE B | = — |
<
Fosi B BE B | B = = =
£
AR | | = — |
2
0.0 T T
Read Write Read Overload Write Overload
Workload
(b) p99 latency overhead for each case.

s MySQL PostgreSQL ElasticSearch Solr
>
g 1.00
S
©
-1 0.75
8
o 0.50
E 0.25
(]
2

0.00 T T T T
Read Write Read Overload Write Overload

Workload
Figure 14. Overhead of ATROPOs. Read Overload: introducing re-
source overload under read-intensive workload; Write Overload:
introducing resource overload under write-intensive workload.

Thus, we design two types of workloads to test ATRo-
pos overhead: (1) Normal workloads, where we ran read-
intensive and write-intensive workloads without trigger-
ing resource overload; and (2) Resource overload workloads,
where we introduced requests to monopolize application
resources to trigger resource overload. In overload work-
loads, we disabled ATroros’ cancellation actions to isolate
and accurately measure only the overhead from tracing and
decision computations.

Figure 14 shows the throughput and 99th latency for five
applications under the two types of workloads. Under nor-
mal workload, ATRoPOs decreased throughput at most 1.95%,
with an average reduction of 0.59%, and increased 99th per-
centile latency by an average of 0.21%, with a maximum
increase of 1.55%. When there is no resource overload, ATRO-
pos periodically samples timestamps and assigns the same
timestamp to ATROPOS resource tracing API calls within each
interval, thereby amortizing the overhead of timestamp re-
trieval over the sampling period. Under resource overload
conditions, ATROPOS aggressively gets timestamp for every
resource tracing API call and thus incurs larger overhead.
Specifically, throughput decreases by an average of 7.09%,
with a maximum drop of 8.12%, and the 99th percentile la-
tency increased by an average of 8.12%, reaching a maxi-
mum increase of 16.14%. Notably, under application resource
overload condition, the system performance is already sig-
nificantly degraded, and the overhead of ATROPOS is small
compared to the performance benefits gained by canceling
the problematic requests.

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

6 Related Work

Overload Control. Existing admission control methods
avoid overload by limiting new requests based on completed
session counts or QoS metrics [7, 9], or by bounding incom-
ing requests and dropping excessive ones [10, 50, 56]. For ex-
ample, Breakwater [10] adjusts admission based on observed
queuing delay, making it effective for CPU and network over-
load but ineffective for application-level resource overload.
Protego [11] specifically targets overload caused by lock
contention, dropping victim requests rather than problem-
atic ones. Other methods, like SEDA [50], dynamically con-
trol client-side request rates, while DAGOR [56] implements
priority-based admission with active queue management.
Atroros introduces a novel overload control approach that
leverages internal signals of application resource contention
and selectively cancels tasks responsible for the contention,
maintaining SLO while minimizing request drops.

Resource Management.The prevalence of cloud applica-
tions and microservices has motivated many works designed

to avoid resource contention and achieve end-to-end per-
formance requirements [43, 55]. Autopilot [44] uses an en-
semble of models to infer efficient CPU and memory re-
quirements and automatically reconfigure the resource limit

for each task. Erms [33] determines the minimum resource

requirement to achieve end-to-end SLA requirements and dy-
namically provision resources. DS2 [27] dynamically scales

allocated computational resources to maintain the perfor-
mance of the workload, while QJUMP [21] prioritizes latency-
critical packets in the network queue. We focus on application-
level resource contention. Such issues are dependent on ap-
plication logic. Partitioning or adjusting system resources

cannot mitigate such contention.

SLO-aware Scheduling. Numerous projects [5, 40, 48] have
proposed to enhance scheduling policies with software SLO
awareness to ensure performance guarantees. DARC [14]
profiles software requests and allocates dedicated cores to
shorter requests to prevent them from being blocked by
longer requests, while Shinjuku [26] improves end-to-end
latency by implementing user-level preemption to allow for
the interruption of user requests. MittOS [22] predicts I/O
times and quickly rejects I/O that will fail to meet the SLO,
allowing applications to redirect requests to less busy nodes.

SLO Guarantees. Several prior works aim at enforcing SLOs
in multi-tenant environments. PSLO [31] maintains tail la-
tency and throughput targets for consolidated virtual ma-
chine storage by dynamically adjusting the I/O concurrency
and arrival rate per VM. FIRM [41] employs machine learn-
ing methods to detect SLO violations in microservices and
adaptively adjusts hardware resources to mitigate these vio-
lations. pBox [25] identifies and penalizes tasks that cause
performance interference to alleviate resource contention
and ensure SLO compliance. While these methods effectively

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

enforce SLO guarantees, they struggle to simultaneously
achieve high SLO attainment and low request drop rates
under severe resource overload conditions.

Real time system is another main target for SLO guarantee.
Real-time systems assume a finite task set with known pa-
rameters like periods, deadlines, or worst-case execution
times (WCETs) [53]. In overload scenarios, models such
as (m,k)-firm scheduling [42] and elastic tasks [6] enable
controlled job skipping or graceful degradation. Feedback-
control-based schedulers adapt to workload variation by
monitoring performance metrics and adjusting resource al-
locations dynamically [32]. Other approaches that proactive
task skipping to adapt to dynamic environmental conditions,
including overload scenarios [49]. Despite these advances,
most prior work focuses on system-level resource manage-
ment and lacks mechanisms to monitor internal application
resource usage or selectively cancel problematic requests
that ATrRoPOs addresses.

Detecting Performance Bugs. Diagnosing performance
bugs that cause resource overload in large-scale software is
challenging. To address this issue, several performance pro-
filers and analyzers have been developed [3, 19, 23, 24, 37, 47,
51, 52]. For instance, Sage [18] employs graphical models to
identify root causes of unpredictable performance issues and
dynamically adjusts resource allocations. Seer [19] applies
deep learning techniques to detect spatial and temporal pat-
terns associated with SLO violations, facilitating proactive
performance management.

7 Conclusion

Application-level resource contention is inevitable in highly
concurrent software. We propose a novel overload control
approach that leverages built-in task cancellation support
available in modern software and selectively identifies prob-
lematic requests that monopolize critical resources to cancel
under overload. We implement this approach in a framework,
ATtROPOs. Our evaluation across widely-used large applica-
tions and real-world overload issues shows that ATRopos
consistently maximizes SLO attainment while minimizes
request loss, significantly outperforming state-of-the-art so-
lutions. It demonstrates that targeted cancellation is a pow-
erful and general strategy for overload control. ATROPOS is
available at https://github.com/OrderLab/Atropos.

Acknowledgments

We thank the anonymous SOSP reviewers and our shepherd
for their valuable and detailed feedback that improved our
work. We thank CloudLab [15] for providing us with the
experiment platform. This work was supported in part by
NSF grants CNS-2317698, CNS-2317751, and CCF-2318937.

https://github.com/OrderLab/Atropos

Mitigating Application Resource Overload with Targeted Task Cancellation

References
[1] Engineering at Fullstory. 2024. Benchmarking etcd v3-demo. https:

[2

[3

[10

[11

[12
[13

[14

[15

—

]

flams!

[

[t

—

[t

—

—_ =

]

—

//etcd.io/docs/v3.2/op-guide/performance/#benchmarks.
Engineering at Fullstory. 2024. Solr benchmarking and load testing
harness. https://github.com/fullstorydev/solr-bench.

Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automat-
ing Root-cause Diagnosis of Performance Anomalies in Production
Software. In Proceedings of the 10th USENIX Conference on Operating
Systems Design and Implementation (OSDI’12). Hollywood, CA, USA,
307-320.

Gaurav Banga, Peter Druschel, and Jeffrey C. Mogul. 1999. Resource
containers: a new facility for resource management in server systems.
In Proceedings of the Third Symposium on Operating Systems Design and
Implementation (New Orleans, Louisiana, USA) (OSDI *99). USENIX
Association, USA, 45-58.

Romil Bhardwaj, Kirthevasan Kandasamy, Asim Biswal, Wenshuo
Guo, Benjamin Hindman, Joseph Gonzalez, Michael Jordan, and Ion
Stoica. 2023. Cilantro: Performance-Aware Resource Allocation for
General Objectives via Online Feedback. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). USENIX As-
sociation, Boston, MA, 623-643. https://www.usenix.org/conference/
osdi23/presentation/bhardwaj

G. Buttazzo et al. 2009. Elastic task model for adaptive real-time
systems. In IEEE Real-Time Systems Symposium.

Huamin Chen and Prasant Mohapatra. 2003. Overload control in
QoS-aware web servers. Comput. Netw. 42, 1 (May 2003), 119-133.
doi:10.1016/S1389-1286(03)00178-6

Shuang Chen, Christina Delimitrou, and Jose F. Martinez. 2019. PAR-
TIES: QoS-Aware Resource Partitioning for Multiple Interactive Ser-
vices. In Proceedings of the Twenty-Fourth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (Providence, RI, USA) (ASPLOS ’19). Association for Computing
Machinery, New York, NY, USA, 107-120. doi:10.1145/3297858.3304005
Ludmila Cherkasova and Peter Phaal. 2002. Session-Based Admission
Control: A Mechanism for Peak Load Management of Commercial
Web Sites. IEEE Trans. Comput. 51, 6 (June 2002), 669-685. doi:10.1109/
TC.2002.1009151

Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad Al-
izadeh, and Adam Belay. 2020. Overload Control for ps-scale RPCs
with Breakwater. In 14th USENLX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 299-314.
https://www.usenix.org/conference/osdi20/presentation/cho

Inho Cho, Ahmed Saeed, Seo Jin Park, Mohammad Alizadeh, and Adam
Belay. 2023. Protego: Overload Control for Applications with Unpre-
dictable Lock Contention. In 20th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 23). USENIX Association,
Boston, MA, 725-738. https://www.usenix.org/conference/nsdi23/
presentation/cho-inho

cppreference.com. [n.d.]. stop_token. https://en.cppreference.com/
w/cpp/thread/stop_token.html

Kalyanmoy Deb and Deb Kalyanmoy. 2001. Multi-Objective Optimiza-
tion Using Evolutionary Algorithms. John Wiley & Sons, Inc., USA.
Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. 2021. When
Idling is Ideal: Optimizing Tail-Latency for Heavy-Tailed Datacenter
Workloads with Perséphone. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (Virtual Event, Germany)
(SOSP °21). Association for Computing Machinery, New York, NY, USA,
621-637. doi:10.1145/3477132.3483571

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

SOSP °25, October 13-16, 2025, Seoul, Republic of Korea

Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-
eration of CloudLab. In 2019 USENIX Annual Technical Conference
(USENIX ATC °19). USENIX Association, Renton, WA, 1-14. https:
//www.usenix.org/conference/atc19/presentation/duplyakin

Elastic. 2024. Rally: Macrobenchmarking framework for Elasticsearch.
https://github.com/elastic/rally.

The Apache Software Foundation. 2024. ab - Apache HTTP server
benchmarking tool. https://httpd.apache.org/docs/2.4/programs/ab.
html.

Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. 2021. Sage: practical and scalable ML-driven performance de-
bugging in microservices. In Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems (Virtual, USA) (ASPLOS °21). Association for Com-
puting Machinery, New York, NY, USA, 135-151.

Yu Gan, Yangqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big Data
to Navigate the Complexity of Performance Debugging in Cloud Mi-
croservices. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (Providence, RI, USA) (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 19-33.

Goetz Graefe. 1993. Query evaluation techniques for large databases.
ACM Comput. Surv. 25, 2 (jun 1993), 73-169.

Matthew P. Grosvenor, Malte Schwarzkopf, Ionel Gog, Robert N. M.
Watson, Andrew W. Moore, Steven Hand, and Jon Crowcroft. 2015.
Queues Don’t Matter When You Can JUMP Them!. In 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
15). USENIX Association, Oakland, CA, 1-14. https://www.usenix.
org/conference/nsdi15/technical-sessions/presentation/grosvenor
Mingzhe Hao, Huaicheng Li, Michael Hao Tong, Chrisma Pakha, Riza O.
Suminto, Cesar A. Stuardo, Andrew A. Chien, and Haryadi S. Gunawi.
2017. MittOS: Supporting Millisecond Tail Tolerance with Fast Reject-
ing SLO-Aware OS Interface. In Proceedings of the 26th Symposium on
Operating Systems Principles (Shanghai, China) (SOSP ’17). Association
for Computing Machinery, New York, NY, USA, 168-183.

Mingzhe Hao, Levent Toksoz, Nanqingin Li, Edward Edberg Halim,
Henry Hoffmann, and Haryadi S. Gunawi. 2020. LinnOS: Predictability
on Unpredictable Flash Storage with a Light Neural Network. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 173-190. https://www.usenix.org/
conference/osdi20/presentation/hao

Yigong Hu, Gonggi Huang, and Peng Huang. 2020. Automated Reason-
ing and Detection of Specious Configuration in Large Systems with
Symbolic Execution. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). USENIX Association, 719-734.
https://www.usenix.org/conference/osdi20/presentation/hu

Yigong Hu, Gongqi Huang, and Peng Huang. 2023. Pushing Perfor-
mance Isolation Boundaries into Application with pBox. In Proceedings
of the 29th Symposium on Operating Systems Principles (Koblenz, Ger-
many) (SOSP ’23). Association for Computing Machinery, New York,
NY, USA, 247-263. doi:10.1145/3600006.3613159

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Maziéres, and Christos Kozyrakis. 2019. Shinjuku: Preemp-
tive Scheduling for usecond-scale Tail Latency. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 345-360. https://www.usenix.org/
conference/nsdi19/presentation/kaffes

Vasiliki Kalavri, John Liagouris, Moritz Hoffmann, Desislava Dim-
itrova, Matthew Forshaw, and Timothy Roscoe. 2018. Three steps
is all you need: fast, accurate, automatic scaling decisions for dis-
tributed streaming dataflows. In 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 783-798. https://www.usenix.org/conference/osdi18/

https://etcd.io/docs/v3.2/op-guide/performance/#benchmarks
https://etcd.io/docs/v3.2/op-guide/performance/#benchmarks
https://github.com/fullstorydev/solr-bench
https://www.usenix.org/conference/osdi23/presentation/bhardwaj
https://www.usenix.org/conference/osdi23/presentation/bhardwaj
https://doi.org/10.1016/S1389-1286(03)00178-6
https://doi.org/10.1145/3297858.3304005
https://doi.org/10.1109/TC.2002.1009151
https://doi.org/10.1109/TC.2002.1009151
https://www.usenix.org/conference/osdi20/presentation/cho
https://www.usenix.org/conference/nsdi23/presentation/cho-inho
https://www.usenix.org/conference/nsdi23/presentation/cho-inho
https://en.cppreference.com/w/cpp/thread/stop_token.html
https://en.cppreference.com/w/cpp/thread/stop_token.html
https://doi.org/10.1145/3477132.3483571
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://github.com/elastic/rally
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/grosvenor
https://www.usenix.org/conference/osdi20/presentation/hao
https://www.usenix.org/conference/osdi20/presentation/hao
https://www.usenix.org/conference/osdi20/presentation/hu
https://doi.org/10.1145/3600006.3613159
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/osdi18/presentation/kalavri
https://www.usenix.org/conference/osdi18/presentation/kalavri
https://www.usenix.org/conference/osdi18/presentation/kalavri

SOSP 25, October 13-16, 2025, Seoul, Republic of Korea

—

—

flam)

presentation/kalavri

Alexey Kopytov. 2024. Sysbench: Scriptable database and system
performance benchmark. https://github.com/akopytov/sysbench.
Choudhary Lalit. 2023. MySQL 5.7 Queriesin Waiting for Table
Flush State. https://www.percona.com/blog/percona-xtrabackup-and-
mysql-5-7-queries-in-waiting-for-table-flush-state/.

The Go Programming Language. [n.d.]. context Package. https:
//pkg.go.dev/context

Ning Li, Hong Jiang, Dan Feng, and Zhan Shi. 2016. PSLO: enforcing
the Xth percentile latency and throughput SLOs for consolidated VM
storage. In Proceedings of the Eleventh European Conference on Com-
puter Systems (London, United Kingdom) (EuroSys ’16). Association
for Computing Machinery, New York, NY, USA, Article 28, 14 pages.
doi:10.1145/2901318.2901330

C. Lu, J. A. Stankovic, G. Tao, and S. H. Son. 2002. Feedback Control
Real-Time Scheduling: Framework, Modeling, and Algorithms. Real-
Time Systems (2002).

Shutian Luo, Huanle Xu, Kejiang Ye, Guoyao Xu, Liping Zhang, Jian
He, Guodong Yang, and Chengzhong Xu. 2022. Erms: Efficient Re-
source Management for Shared Microservices with SLA Guarantees. In
Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 1
(Vancouver, BC, Canada) (ASPLOS 2023). Association for Computing
Machinery, New York, NY, USA, 62-77.

Linux man page. [n.d.]. pthread_cancel(3). https://www.man7.org/
linux/man-pages/man3/pthread_cancel.3.html

Microsoft. [n.d.]. CancellationToken Struct. https://learn.microsoft.
com/en-us/dotnet/api/system.threading.cancellationtoken?view=
net-9.0

Microsoft. 2024. Microsoft Azure: Cloud Computing Services. https:
//azure.microsoft.com/en-us.

Amirhossein Mirhosseini, Sameh Elnikety, and Thomas F. Wenisch.
2021. Parslo: A Gradient Descent-based Approach for Near-optimal
Partial SLO Allotment in Microservices. In Proceedings of the ACM Sym-
posium on Cloud Computing (Seattle, WA, USA) (SoCC ’21). Association
for Computing Machinery, New York, NY, USA, 442-457.

[38] Jeffrey C. Mogul and K. K. Ramakrishnan. 1997. Eliminating receive

livelock in an interrupt-driven kernel. ACM Trans. Comput. Syst. 15, 3
(Aug. 1997), 217-252. doi:10.1145/263326.263335

Oracle. [n.d.]. The Java Tutorials: Interrupt. https://docs.oracle.com/
javase/tutorial/essential/concurrency/interrupt.html

George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Principles
(Shanghai, China) (SOSP °17). Association for Computing Machinery,
New York, NY, USA, 325-341. doi:10.1145/3132747.3132780

Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained
Resource Management Framework for SLO-Oriented Microservices.
In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI °20). USENIX Association, 805-825.
https://www.usenix.org/conference/osdi20/presentation/qiu

Gang Quan and Xiaobo Hu. 2000. Enhanced fixed-priority scheduling
with (m,k)-firm guarantee. In Proceedings of the 21st IEEE Conference
on Real-Time Systems Symposium (Orlando, Florida) (RTSS °00). IEEE
Computer Society, USA, 79-88.

Francisco Romero, Mark Zhao, Neeraja J. Yadwadkar, and Christos
Kozyrakis. 2021. Llama: A Heterogeneous & Serverless Framework
for Auto-Tuning Video Analytics Pipelines. In Proceedings of the
ACM Symposium on Cloud Computing (Seattle, WA, USA) (SoCC ’21).
Association for Computing Machinery, New York, NY, USA, 1-17.
doi:10.1145/3472883.3486972

Krzysztof Rzadca, Pawel Findeisen, Jacek Swiderski, Przemyslaw Zych,
Przemyslaw Broniek, Jarek Kusmierek, Pawel Nowak, Beata Strack,

Yigong Hu, Zeyin Zhang, Yicheng Liu, Yile Gu, Shuangyu Lei, Baris Kasikci, and Peng Huang

Piotr Witusowski, Steven Hand, and John Wilkes. 2020. Autopilot:
workload autoscaling at Google. In Proceedings of the Fifteenth Euro-
pean Conference on Computer Systems (Heraklion, Greece) (EuroSys "20).
Association for Computing Machinery, New York, NY, USA, Article
16, 16 pages.

ServerFault. 2017. How to deal with mysqldump and inn-
odb_buffer_pool_size? https://serverfault.com/questions/852323/how-
to-deal-with-mysqldump-and-innodb-buffer-pool-size.

Combaudon Stephane. 2013. Handling long-running queries in MySQL
with XtraBackup. https://www.percona.com/blog/handling-long-
running-queries-in-mysql-with-percona-xtrabackup/.

Jorg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bha-
totia, Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fetzer.
2017. Sieve: actionable insights from monitored metrics in distributed
systems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware Con-
ference (Las Vegas, Nevada) (Middleware ’17). Association for Comput-
ing Machinery, New York, NY, USA, 14-27.

Midhul Vuppalapati, Giannis Fikioris, Rachit Agarwal, Asaf Cidon,
Anurag Khandelwal, and Eva Tardos. 2023. Karma: Resource Alloca-
tion for Dynamic Demands. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23). USENIX Association,
Boston, MA, 645-662. https://www.usenix.org/conference/osdi23/
presentation/vuppalapati

Zhilu Wang, Chao Huang, Hyoseung Kim, Wenchao Li, and Qi Zhu.
2021. Cross-Layer Adaptation with Safety-Assured Proactive Task Job
Skipping. ACM Trans. Embed. Comput. Syst. 20, 5s, Article 100 (Sept.
2021), 25 pages. doi:10.1145/3477031

Matt Welsh and David Culler. 2003. Adaptive overload control for
busy internet servers. In Proceedings of the 4th Conference on USENLX
Symposium on Internet Technologies and Systems - Volume 4 (Seattle,
WA) (USITS’03). USENIX Association, USA, 4.

Lingmei Weng, Yigong Hu, Peng Huang, Jason Nieh, and Junfeng Yang.
2023. Effective Performance Issue Diagnosis with Value-Assisted Cost
Profiling. In Proceedings of the Eighteenth European Conference on Com-
puter Systems (Rome, Italy) (EuroSys 23). Association for Computing
Machinery, New York, NY, USA, 1-17. doi:10.1145/3552326.3587444
Lingmei Weng, Peng Huang, Jason Nieh, and Junfeng Yang. 2021.
Argus: Debugging Performance Issues in Modern Desktop Applica-
tions with Annotated Causal Tracing. In 2021 USENIX Annual Tech-
nical Conference (USENIX ATC 21). USENIX Association, 193-207.
https://www.usenix.org/conference/atc21/presentation/weng
Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti,
Stephan Thesing, David Whalley, Guillem Bernat, Christian Ferdinand,
Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter
Puschner, Jan Staschulat, and Per Stenstrom. 2008. The worst-case
execution-time problem—overview of methods and survey of tools.
ACM Trans. Embed. Comput. Syst. 7, 3, Article 36 (May 2008), 53 pages.
doi:10.1145/1347375.1347389

Peter Zaitsev. 2017. The Impact of Swapping on MySQL Per-
formance. https://www.percona.com/blog/impact-of-swapping-on-
mysql-performance/.

Yanqi Zhang, Weizhe Hua, Zhuangzhuang Zhou, G. Edward Suh, and
Christina Delimitrou. 2021. Sinan: ML-based and QoS-aware resource
management for cloud microservices. In Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (Virtual, USA) (ASPLOS ’21). As-
sociation for Computing Machinery, New York, NY, USA, 167-181.
doi:10.1145/3445814.3446693

Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan Liu,
Rui Gu, Beng Chin Ooi, and Junfeng Yang. 2018. Overload Control for
Scaling WeChat Microservices. In Proceedings of the ACM Symposium
on Cloud Computing (Carlsbad, CA, USA) (SoCC ’18). Association for
Computing Machinery, New York, NY, USA, 149-161. doi:10.1145/
3267809.3267823

https://www.usenix.org/conference/osdi18/presentation/kalavri
https://www.usenix.org/conference/osdi18/presentation/kalavri
https://github.com/akopytov/sysbench
https://www.percona.com/blog/percona-xtrabackup-and-mysql-5-7-queries-in-waiting-for-table-flush-state/
https://www.percona.com/blog/percona-xtrabackup-and-mysql-5-7-queries-in-waiting-for-table-flush-state/
https://pkg.go.dev/context
https://pkg.go.dev/context
https://doi.org/10.1145/2901318.2901330
https://www.man7.org/linux/man-pages/man3/pthread_cancel.3.html
https://www.man7.org/linux/man-pages/man3/pthread_cancel.3.html
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken?view=net-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.threading.cancellationtoken?view=net-9.0
https://azure.microsoft.com/en-us
https://azure.microsoft.com/en-us
https://doi.org/10.1145/263326.263335
https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/interrupt.html
https://doi.org/10.1145/3132747.3132780
https://www.usenix.org/conference/osdi20/presentation/qiu
https://doi.org/10.1145/3472883.3486972
https://serverfault.com/questions/852323/how-to-deal-with-mysqldump-and-innodb-buffer-pool-size
https://serverfault.com/questions/852323/how-to-deal-with-mysqldump-and-innodb-buffer-pool-size
https://www.percona.com/blog/handling-long-running-queries-in-mysql-with-percona-xtrabackup/
https://www.percona.com/blog/handling-long-running-queries-in-mysql-with-percona-xtrabackup/
https://www.usenix.org/conference/osdi23/presentation/vuppalapati
https://www.usenix.org/conference/osdi23/presentation/vuppalapati
https://doi.org/10.1145/3477031
https://doi.org/10.1145/3552326.3587444
https://www.usenix.org/conference/atc21/presentation/weng
https://doi.org/10.1145/1347375.1347389
https://www.percona.com/blog/impact-of-swapping-on-mysql-performance/
https://www.percona.com/blog/impact-of-swapping-on-mysql-performance/
https://doi.org/10.1145/3445814.3446693
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Application Resources Overload
	2.2 Limitation of Existing Solutions
	2.3 Challenges
	2.4 Prevalence of Task Cancellation

	3 Design of Atropos
	3.1 Integrating Atropos into Applications
	3.2 Per-task Resource Usage Tracking
	3.3 Triggering Cancellation
	3.4 Estimating Resource Overload
	3.5 Multi-objective Cancellation Policy
	3.6 Handling Task Cancellations

	4 Implementation
	5 Evaluation
	5.1 Experiment Setup
	5.2 Mitigating Application Resource Overload
	5.3 Maintaining the SLO under Resource Overload
	5.4 Effectiveness of Multi-objective Policies
	5.5 Overhead

	6 Related Work
	7 Conclusion
	References

